메뉴 건너뛰기




Volumn 73, Issue 1-3, 2009, Pages 536-541

Improving the discriminant ability of local margin based learning method by incorporating the global between-class separability criterion

Author keywords

Between class separability criterion (BCSC); Feature extraction; Local discriminant analysis; Manifold learning; Marginal Fisher analysis (MFA)

Indexed keywords

BETWEEN-CLASS SEPARABILITY CRITERION (BCSC); CLASS-SEPARABILITY CRITERION; EXPERIMENTAL EVALUATION; FEATURE EXTRACTION AND CLASSIFICATION; FEATURE REPRESENTATION; HIGH DIMENSIONAL DATA; INTRINSIC LOW-DIMENSIONAL MANIFOLDS; LEARNING METHODS; LEARNING PROBLEM; LIMITED DATA; LOCAL DISCRIMINANT ANALYSIS; MACHINE-LEARNING; MANIFOLD LEARNING; MARGINAL FISHER ANALYSIS; MARGINAL FISHER ANALYSIS (MFA); SUPERVISED LEARNING METHODS;

EID: 70350742991     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.07.016     Document Type: Article
Times cited : (20)

References (20)
  • 8
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • Li H., Jiang T., and Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks 17 1 (2006) 157-165
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 11
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., and Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000) 2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 16
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., Silva V., and Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 17
    • 0036487285 scopus 로고    scopus 로고
    • Why can LDA be performed in PCA transformed space?
    • Yang J., and Yang J. Why can LDA be performed in PCA transformed space?. Pattern Recognition 36 2 (2003) 563-566
    • (2003) Pattern Recognition , vol.36 , Issue.2 , pp. 563-566
    • Yang, J.1    Yang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.