메뉴 건너뛰기




Volumn 4723 LNCS, Issue , 2007, Pages 93-105

Relational topographic maps

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER ANALYSIS; DATA PROCESSING; EMBEDDED SYSTEMS; MATRIX ALGEBRA; OPTIMIZATION; SOFTWARE PROTOTYPING; TOPOGRAPHY;

EID: 38049059227     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-74825-0_9     Document Type: Conference Paper
Times cited : (18)

References (31)
  • 3
    • 84899020966 scopus 로고    scopus 로고
    • Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) NIPS, 11, pp. 438-444. MIT Press, Cambridge (1999)
    • Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) NIPS, vol. 11, pp. 438-444. MIT Press, Cambridge (1999)
  • 4
    • 0032602777 scopus 로고    scopus 로고
    • A stochastic self-organizing map for proximity data
    • Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural Computation 11, 139-155 (1999)
    • (1999) Neural Computation , vol.11 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 5
    • 38049002803 scopus 로고    scopus 로고
    • Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised median neural gas. In: Dagli, C., Buczak, A., Enke, D., Embrechts, A., Ersoy, O. (eds.) Intelligent Engineering Systems Through Artificial Neural Networks 16. Smart Engineering System Design, pp. 623-633. ASME Press (2006)
    • Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised median neural gas. In: Dagli, C., Buczak, A., Enke, D., Embrechts, A., Ersoy, O. (eds.) Intelligent Engineering Systems Through Artificial Neural Networks 16. Smart Engineering System Design, pp. 623-633. ASME Press (2006)
  • 7
    • 38049052786 scopus 로고    scopus 로고
    • Neural gas clustering for dissimilarity data with continuous prototypes
    • Sandoval, F, Prieto, A, Cabestany, J, Graña, M, eds, IWANN 2007, Springer, Heidel-berg
    • Hasenfuss, A., Hammer, B., Schleif, F.-M., Villmann, T.: Neural gas clustering for dissimilarity data with continuous prototypes. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, Springer, Heidel-berg (2007)
    • (2007) LNCS , vol.4507
    • Hasenfuss, A.1    Hammer, B.2    Schleif, F.-M.3    Villmann, T.4
  • 8
    • 33847355221 scopus 로고    scopus 로고
    • Magnification control for batch neural gas
    • Hammer, B., Hasenfuss, A., Villmann, T.: Magnification control for batch neural gas. Neurocomputing 70, 1225-1234 (2007)
    • (2007) Neurocomputing , vol.70 , pp. 1225-1234
    • Hammer, B.1    Hasenfuss, A.2    Villmann, T.3
  • 10
    • 35048848086 scopus 로고    scopus 로고
    • Learning with distance substitution kernels
    • Rasmussen, C.E, Bülthoff, H.H, Schölkopf, B, Giese, M.A, eds, Pattern Recognition, Springer, Heidelberg
    • Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) Pattern Recognition. LNCS, vol. 3175, Springer, Heidelberg (2004)
    • (2004) LNCS , vol.3175
    • Haasdonk, B.1    Bahlmann, C.2
  • 11
    • 38049078168 scopus 로고    scopus 로고
    • Relational Topographic Maps
    • Technical Report IfI-07-01, Clausthal University of Technology, Institute of Informatics April
    • Hammer, B., Hasenfuss, A.: Relational Topographic Maps, Technical Report IfI-07-01, Clausthal University of Technology, Institute of Informatics (April 2007)
    • (2007)
    • Hammer, B.1    Hasenfuss, A.2
  • 12
    • 0028667335 scopus 로고
    • Nerf c-means: Non-euclidean relational fuzzy clustering
    • Hathaway, R.J., Bezdìk, J.C: Nerf c-means: Non-euclidean relational fuzzy clustering. Pattern Recognition 27(3), 429-437 (1994)
    • (1994) Pattern Recognition , vol.27 , Issue.3 , pp. 429-437
    • Hathaway, R.J.1    Bezdìk, J.C.2
  • 14
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks 12, 1299-1305 (2001)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1299-1305
    • Heskes, T.1
  • 15
    • 34147093858 scopus 로고    scopus 로고
    • On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification
    • Juan, A., Vidal, E.: On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification. In: ICPR 2000, vol. 2, pp. 680-683 (2000)
    • (2000) ICPR 2000 , vol.2 , pp. 680-683
    • Juan, A.1    Vidal, E.2
  • 17
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15, 945-952 (2002)
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 18
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1-27 (1964)
    • (1964) Psychometrika , vol.29 , pp. 1-27
    • Kruskal, J.B.1
  • 19
    • 0019189775 scopus 로고
    • Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes
    • Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes. Clinical Genetics 18, 355-370 (1980)
    • (1980) Clinical Genetics , vol.18 , pp. 355-370
    • Lundsteen, C.1    Phillip, J.2    Granum, E.3
  • 20
    • 0027632248 scopus 로고
    • Neural-gas' network for vector quantization and its application to time-series prediction
    • Martinetz, T., Berkovich, S.G., Schulten, K.J.: Neural-gas' network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4, 558-569 (1993)
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.G.2    Schulten, K.J.3
  • 21
    • 0028204732 scopus 로고
    • Topology representing networks
    • Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7, 507-522 (1994)
    • (1994) Neural Networks , vol.7 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 22
    • 0029921179 scopus 로고    scopus 로고
    • Quantifying the local reliability of a sequence alignment
    • Mevissen, H., Vingron, M.: Quantifying the local reliability of a sequence alignment. Protein Engineering 9, 127-132 (1996)
    • (1996) Protein Engineering , vol.9 , pp. 127-132
    • Mevissen, H.1    Vingron, M.2
  • 23
    • 33745360257 scopus 로고    scopus 로고
    • Edit distance based kernel functions for structural pattern classification
    • Neuhaus. M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852-1863 (2006)
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1852-1863
    • Neuhaus, M.1    Bunke, H.2
  • 24
    • 10044243405 scopus 로고    scopus 로고
    • Kernel neural gas algorithms with application to cluster analysis
    • 2004
    • Qin, A.K., Suganthan, P.N.: Kernel neural gas algorithms with application to cluster analysis. In: ICPR 2004, vol. 4, pp. 617-620 (2004)
    • (2004) ICPR , vol.4 , pp. 617-620
    • Qin, A.K.1    Suganthan, P.N.2
  • 26
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Sammon Jr., J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18, 401-409 (1969)
    • (1969) IEEE Transactions on Computers , vol.18 , pp. 401-409
    • Sammon Jr., J.W.1
  • 27
    • 0346451740 scopus 로고    scopus 로고
    • The kernel trick for distances
    • Schölkopf, B.: The kernel trick for distances, Microsoft TR 2000-51 (2000)
    • (2000) Microsoft TR , vol.2000 -51
    • Schölkopf, B.1
  • 28
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • Seo, S., Obermayer, K.: Self-organizing maps and clustering methods for matrix data. Neural Networks 17, 1211-1230 (2004)
    • (2004) Neural Networks , vol.17 , pp. 1211-1230
    • Seo, S.1    Obermayer, K.2
  • 29
    • 12244280405 scopus 로고    scopus 로고
    • A generative probabilistic approach to visualizing sets of symbolic sequences
    • Kohavi, R, Gehrke, J, DuMouchel, W, Ghosh, J, eds, ACM Press, New York
    • Tino, P., Kaban, A., Sun, Y.: A generative probabilistic approach to visualizing sets of symbolic sequences. In: Kohavi, R., Gehrke, J., DuMouchel, W., Ghosh, J. (eds.) Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD-2004, pp. 701-706. ACM Press, New York (2004)
    • (2004) Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , vol.KDD-2004 , pp. 701-706
    • Tino, P.1    Kaban, A.2    Sun, Y.3
  • 31
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density network
    • Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density network. Neural Networks 19(6), 780-784 (2006)
    • (2006) Neural Networks , vol.19 , Issue.6 , pp. 780-784
    • Yin, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.