메뉴 건너뛰기




Volumn 16, Issue 1, 2011, Pages 1-16

Missing Not at Random Models for Latent Growth Curve Analyses

Author keywords

Attrition; Missing data; Missing not at random; Pattern mixture model; Selection model

Indexed keywords

ARTICLE; BEHAVIORAL RESEARCH; HUMAN; LONGITUDINAL STUDY; METHODOLOGY; REGRESSION ANALYSIS; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 79952612356     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/a0022640     Document Type: Article
Times cited : (197)

References (53)
  • 1
    • 0033858416 scopus 로고    scopus 로고
    • Modeling repeated count data subject to informative dropout
    • Albert P.S., Follmann D.A. Modeling repeated count data subject to informative dropout. Biometrics 2000, 56:667-677.
    • (2000) Biometrics , vol.56 , pp. 667-677
    • Albert, P.S.1    Follmann, D.A.2
  • 2
    • 85017468853 scopus 로고    scopus 로고
    • Shared-parameter models
    • Chapman & Hall, Boca Raton, FL, G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.)
    • Albert P.S., Follmann D.A. Shared-parameter models. Longitudinal data analysis 2009, 433-452. Chapman & Hall, Boca Raton, FL. G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.).
    • (2009) Longitudinal data analysis , pp. 433-452
    • Albert, P.S.1    Follmann, D.A.2
  • 3
    • 0036712328 scopus 로고    scopus 로고
    • A latent autoregressive model for longitudinal binary data subject to informative missingness
    • Albert P.S., Follmann D.A., Wang S.A., Suh E.B. A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 2002, 58:631-642.
    • (2002) Biometrics , vol.58 , pp. 631-642
    • Albert, P.S.1    Follmann, D.A.2    Wang, S.A.3    Suh, E.B.4
  • 4
    • 39849089597 scopus 로고    scopus 로고
    • A latent-class mixture model for incomplete longitudinal Gaussian data
    • Beunckens C., Molenberghs G., Verbeke G., Mallinckrodt C. A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics 2008, 64:96-105.
    • (2008) Biometrics , vol.64 , pp. 96-105
    • Beunckens, C.1    Molenberghs, G.2    Verbeke, G.3    Mallinckrodt, C.4
  • 7
    • 48749115069 scopus 로고    scopus 로고
    • Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts
    • Dantan E., Proust-Lima C., Letenneur L., Jacqmin-Gadda H. Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts. International Journal of Biostatistics 2008, 4:1-26.
    • (2008) International Journal of Biostatistics , vol.4 , pp. 1-26
    • Dantan, E.1    Proust-Lima, C.2    Letenneur, L.3    Jacqmin-Gadda, H.4
  • 8
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
    • Demirtas H., Schafer J.L. On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 2003, 22:2553-2575.
    • (2003) Statistics in Medicine , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, J.L.2
  • 9
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis
    • Diggle P., Kenward M.G. Informative dropout in longitudinal data analysis. Applied Statistics 1994, 43:49-94.
    • (1994) Applied Statistics , vol.43 , pp. 49-94
    • Diggle, P.1    Kenward, M.G.2
  • 11
    • 0029028456 scopus 로고
    • An approximate generalized model with random effects for informative missing data
    • Follmann D., Wu M. An approximate generalized model with random effects for informative missing data. Biometrics 1995, 51:151-168.
    • (1995) Biometrics , vol.51 , pp. 151-168
    • Follmann, D.1    Wu, M.2
  • 12
    • 4644318168 scopus 로고    scopus 로고
    • Alternative methods for handling attrition: An illustration using data from the Fast Track evaluation
    • Foster E.M., Fang G.Y. Alternative methods for handling attrition: An illustration using data from the Fast Track evaluation. Evaluation Review 2004, 28:434-464.
    • (2004) Evaluation Review , vol.28 , pp. 434-464
    • Foster, E.M.1    Fang, G.Y.2
  • 13
    • 56549100516 scopus 로고    scopus 로고
    • Using latent growth models to evaluate longitudinal change
    • Information Age, Greenwood, CT, G.R. Hancock, R.O. Mueller (Eds.)
    • Hancock G.R., Lawrence F.R. Using latent growth models to evaluate longitudinal change. Structural equation modeling: A second course 2006, 171-196. Information Age, Greenwood, CT. G.R. Hancock, R.O. Mueller (Eds.).
    • (2006) Structural equation modeling: A second course , pp. 171-196
    • Hancock, G.R.1    Lawrence, F.R.2
  • 14
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models
    • Heckman J.T. The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement 1976, 5:475-492.
    • (1976) Annals of Economic and Social Measurement , vol.5 , pp. 475-492
    • Heckman, J.T.1
  • 15
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • Heckman J.T. Sample selection bias as a specification error. Econometrica 1979, 47:153-161.
    • (1979) Econometrica , vol.47 , pp. 153-161
    • Heckman, J.T.1
  • 16
    • 0002105479 scopus 로고    scopus 로고
    • Application of random-effects pattern-mixture models for missing data in longitudinal studies
    • Hedeker D., Gibbons R.D. Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods 1997, 2:64-78.
    • (1997) Psychological Methods , vol.2 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2
  • 18
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan J.W., Laird N.M. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 1997, 16:239-257.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-257
    • Hogan, J.W.1    Laird, N.M.2
  • 21
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with non-random dropout: An illustration of sensitivity
    • Kenward M.G. Selection models for repeated measurements with non-random dropout: An illustration of sensitivity. Statistics in Medicine 1998, 17:2723-2732.
    • (1998) Statistics in Medicine , vol.17 , pp. 2723-2732
    • Kenward, M.G.1
  • 22
    • 2942677478 scopus 로고    scopus 로고
    • Latent pattern mixture models for informative intermittent missing data in longitudinal studies
    • Lin H., McCulloch C.E., Rosenheck R.A. Latent pattern mixture models for informative intermittent missing data in longitudinal studies. Biometrics 2004, 60:295-305.
    • (2004) Biometrics , vol.60 , pp. 295-305
    • Lin, H.1    McCulloch, C.E.2    Rosenheck, R.A.3
  • 23
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little R. Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 1995, 90:1112-1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.1
  • 24
    • 85057445352 scopus 로고    scopus 로고
    • Selection and pattern mixture models
    • Chapman & Hall, Boca Raton, FL, G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.)
    • Little R. Selection and pattern mixture models. Longitudinal data analysis 2009, 409-431. Chapman & Hall, Boca Raton, FL. G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.).
    • (2009) Longitudinal data analysis , pp. 409-431
    • Little, R.1
  • 28
    • 0037197628 scopus 로고    scopus 로고
    • Selection models and pattern-mixture models to analyse longitudinal quality of life data subject to drop-out
    • Michiels B., Molenberghs G., Bijnens L., Vangeneugden T., Thijs H. Selection models and pattern-mixture models to analyse longitudinal quality of life data subject to drop-out. Statistics in Medicine 2002, 21:1023-1041.
    • (2002) Statistics in Medicine , vol.21 , pp. 1023-1041
    • Michiels, B.1    Molenberghs, G.2    Bijnens, L.3    Vangeneugden, T.4    Thijs, H.5
  • 31
    • 85057497084 scopus 로고    scopus 로고
    • Sensitivity analysis for incomplete data
    • Chapman & Hall, Boca Raton, FL, G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.)
    • Molenberghs G., Verbeke G., Kenward M.G. Sensitivity analysis for incomplete data. Longitudinal data analysis 2009, 501-551. Chapman & Hall, Boca Raton, FL. G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.).
    • (2009) Longitudinal data analysis , pp. 501-551
    • Molenberghs, G.1    Verbeke, G.2    Kenward, M.G.3
  • 32
    • 84995346800 scopus 로고    scopus 로고
    • Growth mixture modeling: Analysis with non-Gaussian random effects
    • Chapman & Hall, Boca Raton, FL, G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.)
    • Muthén B., Asparouhov T. Growth mixture modeling: Analysis with non-Gaussian random effects. Longitudinal data analysis 2009, 144-165. Chapman & Hall, Boca Raton, FL. G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.).
    • (2009) Longitudinal data analysis , pp. 144-165
    • Muthén, B.1    Asparouhov, T.2
  • 33
    • 79952582418 scopus 로고    scopus 로고
    • Growth modeling with non-ignorable dropout: Alternative analyses of the STAR*D antidepressant trial
    • Muthén B., Asparouhov T., Hunter A., Leuchter A. Growth modeling with non-ignorable dropout: Alternative analyses of the STAR*D antidepressant trial. Psychological Methods 2011, 16.
    • (2011) Psychological Methods , pp. 16
    • Muthén, B.1    Asparouhov, T.2    Hunter, A.3    Leuchter, A.4
  • 34
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthén B., Kaplan D., Hollis M. On structural equation modeling with data that are not missing completely at random. Psychometrika 1987, 52:431-462.
    • (1987) Psychometrika , vol.52 , pp. 431-462
    • Muthén, B.1    Kaplan, D.2    Hollis, M.3
  • 36
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • Muthén B., Shedden K. Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 1999, 55:463-469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 39
  • 40
    • 84907508487 scopus 로고    scopus 로고
    • Inverse probability weighted methods
    • Chapman & Hall, Boca Raton, FL, G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.)
    • Rotnitzky A. Inverse probability weighted methods. Longitudinal data analysis 2009, 453-476. Chapman & Hall, Boca Raton, FL. G. Fitzmaurice, M. Davidian, G. Verbeke, G. Molenberghs (Eds.).
    • (2009) Longitudinal data analysis , pp. 453-476
    • Rotnitzky, A.1
  • 41
    • 0346733311 scopus 로고    scopus 로고
    • Modeling longitudinal data with nonignorable dropout using a latent dropout class model
    • Roy J. Modeling longitudinal data with nonignorable dropout using a latent dropout class model. Biometrics 2003, 59:829-836.
    • (2003) Biometrics , vol.59 , pp. 829-836
    • Roy, J.1
  • 42
    • 43749111782 scopus 로고    scopus 로고
    • A general class of pattern mixture models for nonignorable dropout with many possible dropout times
    • Roy J., Daniels M.J. A general class of pattern mixture models for nonignorable dropout with many possible dropout times. Biometrics 2008, 64:538-545.
    • (2008) Biometrics , vol.64 , pp. 538-545
    • Roy, J.1    Daniels, M.J.2
  • 43
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin D.B. Inference and missing data. Biometrika 1976, 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 45
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • Schafer J.L. Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica 2003, 57:19-35.
    • (2003) Statistica Neerlandica , vol.57 , pp. 19-35
    • Schafer, J.L.1
  • 46
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer J.L., Graham J.W. Missing data: Our view of the state of the art. Psychological Methods 2002, 7:147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 51
    • 0024438062 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model
    • Wu M.C., Bailey K.R. Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model. Biometrics 1989, 45:939-955.
    • (1989) Biometrics , vol.45 , pp. 939-955
    • Wu, M.C.1    Bailey, K.R.2
  • 52
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu M.C., Carroll R.J. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 1988, 44:175-188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2
  • 53
    • 63049121747 scopus 로고    scopus 로고
    • Mixed-effect hybrid models for longitudinal data with nonignorable dropout
    • Yuan Y., Little R.J.A. Mixed-effect hybrid models for longitudinal data with nonignorable dropout. Biometrics 2009, 65:478-486.
    • (2009) Biometrics , vol.65 , pp. 478-486
    • Yuan, Y.1    Little, R.J.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.