메뉴 건너뛰기




Volumn , Issue , 2011, Pages 455-464

CMAP: Effective fusion of quality and relevance for multi-criteria recommendation

Author keywords

Collaborative filtering; Continuous time markov process; Recommender system

Indexed keywords

COLLABORATIVE FILTERING; COMBINATION METHOD; COMBINED METHOD; COMPUTATIONAL TIME; CONTINUOUS TIME; EXPERIMENTAL VERIFICATION; HIGH QUALITY; LINEAR COMPLEXITY; MULTI-CRITERIA; NATURAL INTEGRATION; QUALITATIVE AND QUANTITATIVE ANALYSIS; REAL APPLICATIONS; REGRESSION PROBLEM; RESEARCH ISSUES; UNIFIED MODEL;

EID: 79952379467     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1935826.1935895     Document Type: Conference Paper
Times cited : (3)

References (41)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • DOI 10.1109/TKDE.2005.99
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE TKDE, 17 (6): 734-749, 2005. (Pubitemid 40860454)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 0031640270 scopus 로고    scopus 로고
    • Recommendation as classification: Using social and content-based information in recommendation
    • C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In Proc. of the NCAI, pages 714-720, 1998.
    • (1998) Proc. of the NCAI , pp. 714-720
    • Basu, C.1    Hirsh, H.2    Cohen, W.3
  • 4
    • 0002051628 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • J. Breese, D. Heckerman, C. Kadie, et al. Empirical analysis of predictive algorithms for collaborative filtering. In Proc. of UAI 98, pages 43-52, 1998.
    • (1998) Proc. of UAI , vol.98 , pp. 43-52
    • Breese, J.1    Heckerman, D.2    Kadie, C.3
  • 5
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and experiments
    • R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12 (4): 331-370, 2002.
    • (2002) User Modeling and User-Adapted Interaction , vol.12 , Issue.4 , pp. 331-370
    • Burke, R.1
  • 8
    • 21944448956 scopus 로고    scopus 로고
    • The Borda count and agenda manipulation
    • M. Dummett. The Borda count and agenda manipulation. Social Choice and Welfare, 15 (2): 289-296, 1998.
    • (1998) Social Choice and Welfare , vol.15 , Issue.2 , pp. 289-296
    • Dummett, M.1
  • 9
    • 48249095475 scopus 로고    scopus 로고
    • Should you invest in the long tail?
    • A. Elberse. Should you invest in the long tail? harvard business review, 86 (7/8): 88-96, 2008.
    • (2008) Harvard Business Review , vol.86 , Issue.7-8 , pp. 88-96
    • Elberse, A.1
  • 10
    • 84858159992 scopus 로고    scopus 로고
    • Superstars and underdogs: An examination of the long tail phenomenon in video sales
    • A. Elberse and E Oberholzer-Gee. Superstars and underdogs: an examination of the long tail phenomenon in video sales. MSI Reports, 45 (4):49-72, 2007.
    • (2007) MSI Reports , vol.45 , Issue.4 , pp. 49-72
    • Elberse, A.1    Oberholzer-Gee, E.2
  • 11
    • 36448974150 scopus 로고    scopus 로고
    • Recommender systems and their impact on sales diversity
    • ACM
    • D. Fleder and K. Hosanagar. Recommender systems and their impact on sales diversity. In Proc. of EC 2007, page 199. ACM, 2007.
    • (2007) Proc. of EC 2007 , pp. 199
    • Fleder, D.1    Hosanagar, K.2
  • 12
    • 17444420350 scopus 로고    scopus 로고
    • Comparing rank and score combination methods for data fusion in information retrieval
    • DOI 10.1007/s10791-005-6994-4
    • D. Frank Hsu and I. Taksa. Comparing rank and score combination methods for data fusion in information retrieval. Information Retrieval, 8 (3): 449-480, 2005. (Pubitemid 40550482)
    • (2005) Information Retrieval , vol.8 , Issue.3 , pp. 449-480
    • Hsu, D.F.1    Taksa, I.2
  • 13
    • 72449181377 scopus 로고    scopus 로고
    • Personalized tag recommendation using graph-based ranking on multi-type interrelated objects
    • Z. Guan, J. Bu, Q. Mei, C. Chen, and C. Wang. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In Proc. of SIGIR'09, pages 540-547, 2009.
    • (2009) Proc. of SIGIR'09 , pp. 540-547
    • Guan, Z.1    Bu, J.2    Mei, Q.3    Chen, C.4    Wang, C.5
  • 14
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • ACM New York, NY, USA
    • I. Herlocker, J. Konstan, and J. Riedl. An algorithmic framework for performing collaborative filtering. Inv. Proc. of SIGIR 99, pages 230-237. ACM New York, NY, USA, 1999.
    • (1999) Inv. Proc. of SIGIR , vol.99 , pp. 230-237
    • Herlocker, I.1    Konstan, J.2    Riedl, J.3
  • 16
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22 (1):89-115, 2004.
    • (2004) ACM Transactions on Information Systems , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 17
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • ACM
    • Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proc. of SIGKDD 08, pages 426-434. ACM, 2008.
    • (2008) Proc. of SIGKDD , vol.8 , pp. 426-434
    • Koren, Y.1
  • 18
    • 67149143122 scopus 로고    scopus 로고
    • Who Rated What: A combination of SVD, correlation and frequent sequence mining
    • M. Kurucz, A. Benczúr, T. Kiss, I. Nagy, A. Szabó, and B. Torma. Who Rated What: a combination of SVD, correlation and frequent sequence mining. In Proc. KDD Cup and Workshop, volume 23, pages 720-727, 2007.
    • (2007) Proc. KDD Cup and Workshop , vol.23 , pp. 720-727
    • Kurucz, M.1    Benczúr, A.2    Kiss, T.3    Nagy, I.4    Szabó, A.5    Torma, B.6
  • 19
    • 0037252945 scopus 로고    scopus 로고
    • Amazon, com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York. Amazon, com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 2003.
    • (2003) IEEE Internet Computing
    • Linden, G.1    Smith, B.2    York, J.3
  • 20
    • 57349097660 scopus 로고    scopus 로고
    • EigenRank: A ranking-oriented approach to collaborative filtering
    • ACM New York, NY, USA
    • N. Liu and Q. Yang. EigenRank: a ranking-oriented approach to collaborative filtering. In Proc. of SIGIR 08, pages 83-90. ACM New York, NY, USA, 2008.
    • (2008) Proc. of SIGIR 08 , pp. 83-90
    • Liu, N.1    Yang, Q.2
  • 21
    • 57349156602 scopus 로고    scopus 로고
    • BrowseRank: Letting web users vote for page importance
    • ACM New York, NY, USA
    • Y. Liu, B. Gao, T. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. BrowseRank: letting web users vote for page importance. In Proc. of SIGIR 08, pages 451-458. ACM New York, NY, USA, 2008.
    • (2008) Proc. of SIGIR , vol.8 , pp. 451-458
    • Liu, Y.1    Gao, B.2    Liu, T.3    Zhang, Y.4    Ma, Z.5    He, S.6    Li, H.7
  • 22
    • 36448972659 scopus 로고    scopus 로고
    • Effective missing data prediction for collaborative filtering
    • ACM New York, NY, USA
    • H. Ma, I. King, and M. Lyu. Effective missing data prediction for collaborative filtering. In Proc. of SIGIR 07, pages 39-46. ACM New York, NY, USA, 2007.
    • (2007) Proc. of SIGIR , vol.7 , pp. 39-46
    • Ma, H.1    King, I.2    Lyu, M.3
  • 23
    • 72249094128 scopus 로고    scopus 로고
    • Learning to recommend with social trust ensemble
    • ACM
    • H. Ma, I. King, and M. Lyu. Learning to recommend with social trust ensemble. In Proc. of ACM SIGIR'09, pages 203-210. ACM, 2009.
    • (2009) Proc. of ACM SIGIR'09 , pp. 203-210
    • Ma, H.1    King, I.2    Lyu, M.3
  • 26
    • 0001391984 scopus 로고    scopus 로고
    • Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach
    • Stanford, California
    • D. Pennock, E. Horvitz, S. Lawrence, and C. Giles. Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach. In Proceedings of UAI 00, pages 473-480. Stanford, California, 2000.
    • (2000) Proceedings of UAI 00 , pp. 473-480
    • Pennock, D.1    Horvitz, E.2    Lawrence, S.3    Giles, C.4
  • 29
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • ACM New York, NY, USA
    • B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In Proc. of WWW 01, pages 285-295. ACM New York, NY, USA, 2001.
    • (2001) Proc. of WWW 01 , pp. 285-295
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Reidl, J.4
  • 30
    • 85119665974 scopus 로고    scopus 로고
    • Analysis of recommendation algorithms for e-commerce
    • New York, NY, USA, ACM
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation algorithms for e-commerce. In Proc. of EC 00, pages 158-167, New York, NY, USA, 2000. ACM.
    • (2000) Proc. of EC 00 , pp. 158-167
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 31
    • 1942516799 scopus 로고    scopus 로고
    • Flexible mixture model for collaborative filtering. In
    • NY, USA
    • L. Si and R. Jin. Flexible mixture model for collaborative filtering. In Proc. of ICML'03. ACM, NY, USA, 2003.
    • (2003) Proc. of ICML'03. ACM
    • Si, L.1    Jin, R.2
  • 33
    • 79952388120 scopus 로고    scopus 로고
    • A classical predictive modeling approach for Task Who rated what? of the KDD CUP 2007
    • J. Sueiras, A. Salafranca, and J. Florez. A classical predictive modeling approach for Task "Who rated what?" of the KDD CUP 2007. Proceedings of the KDD Cup, page 34, 2007.
    • (2007) Proceedings of the KDD Cup , pp. 34
    • Sueiras, J.1    Salafranca, A.2    Florez, J.3
  • 35
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • ACM New York, NY, USA
    • J. Wang, A. De Vries, and M. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proc. of SIGIR 2006, pages 501-508. ACM New York, NY, USA, 2006.
    • (2006) Proc. of SIGIR 2006 , pp. 501-508
    • Wang, J.1    De Vries, A.2    Reinders, M.3
  • 37
    • 74549139149 scopus 로고    scopus 로고
    • A social recommendation framework based on multi-scale continuous conditional random fields
    • ACM
    • X. Xin, I. King, H. Deng, and M. Lyu. A social recommendation framework based on multi-scale continuous conditional random fields. In Proc. of CIKM'09, pages 1247-1256. ACM, 2009.
    • (2009) Proc. of CIKM'09 , pp. 1247-1256
    • Xin, X.1    King, I.2    Deng, H.3    Lyu, M.4
  • 38
    • 84885578920 scopus 로고    scopus 로고
    • AndZ. Chen. Scalable collaborative filtering using cluster-based smoothing
    • ACM New York, NY, USA
    • G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, andZ. Chen. Scalable collaborative filtering using cluster-based smoothing. In Proc. of SIGIR 2005, pages 114-121. ACM New York, NY, USA, 2005.
    • (2005) Proc. of SIGIR 2005 , pp. 114-121
    • Xue, G.1    Lin, C.2    Yang, Q.3    Xi, W.4    Zeng, H.5    Yu, Y.6
  • 39
    • 72449152230 scopus 로고    scopus 로고
    • Fast nonparametric matrix factorization for large-scale collaborative filtering
    • ACM, NY, USA
    • K. Yu, S. Zhu, J. Lafferty, and Y Gong. Fast nonparametric matrix factorization for large-scale collaborative filtering. In Proc. of SIGlR'09, pages 211-218. ACM, NY, USA, 2009.
    • (2009) Proc. of SIGlR'09 , pp. 211-218
    • Yu, K.1    Zhu, S.2    Lafferty, J.3    Gong, Y.4
  • 40
    • 36448969351 scopus 로고    scopus 로고
    • Efficient bayesian hierarchical user modeling for recommendation system
    • ACM
    • Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling for recommendation system. In Proc. of SIGIR 2007, pages 47-54. ACM, 2007.
    • (2007) Proc. of SIGIR 2007 , pp. 47-54
    • Zhang, Y.1    Koren, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.