-
1
-
-
20844435854
-
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
-
DOI 10.1109/TKDE.2005.99
-
G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE TKDE, 17 (6): 734-749, 2005. (Pubitemid 40860454)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.6
, pp. 734-749
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
3
-
-
0031640270
-
Recommendation as classification: Using social and content-based information in recommendation
-
C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In Proc. of the NCAI, pages 714-720, 1998.
-
(1998)
Proc. of the NCAI
, pp. 714-720
-
-
Basu, C.1
Hirsh, H.2
Cohen, W.3
-
4
-
-
0002051628
-
Empirical analysis of predictive algorithms for collaborative filtering
-
J. Breese, D. Heckerman, C. Kadie, et al. Empirical analysis of predictive algorithms for collaborative filtering. In Proc. of UAI 98, pages 43-52, 1998.
-
(1998)
Proc. of UAI
, vol.98
, pp. 43-52
-
-
Breese, J.1
Heckerman, D.2
Kadie, C.3
-
5
-
-
0036959356
-
Hybrid recommender systems: Survey and experiments
-
R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12 (4): 331-370, 2002.
-
(2002)
User Modeling and User-Adapted Interaction
, vol.12
, Issue.4
, pp. 331-370
-
-
Burke, R.1
-
8
-
-
21944448956
-
The Borda count and agenda manipulation
-
M. Dummett. The Borda count and agenda manipulation. Social Choice and Welfare, 15 (2): 289-296, 1998.
-
(1998)
Social Choice and Welfare
, vol.15
, Issue.2
, pp. 289-296
-
-
Dummett, M.1
-
9
-
-
48249095475
-
Should you invest in the long tail?
-
A. Elberse. Should you invest in the long tail? harvard business review, 86 (7/8): 88-96, 2008.
-
(2008)
Harvard Business Review
, vol.86
, Issue.7-8
, pp. 88-96
-
-
Elberse, A.1
-
10
-
-
84858159992
-
Superstars and underdogs: An examination of the long tail phenomenon in video sales
-
A. Elberse and E Oberholzer-Gee. Superstars and underdogs: an examination of the long tail phenomenon in video sales. MSI Reports, 45 (4):49-72, 2007.
-
(2007)
MSI Reports
, vol.45
, Issue.4
, pp. 49-72
-
-
Elberse, A.1
Oberholzer-Gee, E.2
-
11
-
-
36448974150
-
Recommender systems and their impact on sales diversity
-
ACM
-
D. Fleder and K. Hosanagar. Recommender systems and their impact on sales diversity. In Proc. of EC 2007, page 199. ACM, 2007.
-
(2007)
Proc. of EC 2007
, pp. 199
-
-
Fleder, D.1
Hosanagar, K.2
-
12
-
-
17444420350
-
Comparing rank and score combination methods for data fusion in information retrieval
-
DOI 10.1007/s10791-005-6994-4
-
D. Frank Hsu and I. Taksa. Comparing rank and score combination methods for data fusion in information retrieval. Information Retrieval, 8 (3): 449-480, 2005. (Pubitemid 40550482)
-
(2005)
Information Retrieval
, vol.8
, Issue.3
, pp. 449-480
-
-
Hsu, D.F.1
Taksa, I.2
-
13
-
-
72449181377
-
Personalized tag recommendation using graph-based ranking on multi-type interrelated objects
-
Z. Guan, J. Bu, Q. Mei, C. Chen, and C. Wang. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In Proc. of SIGIR'09, pages 540-547, 2009.
-
(2009)
Proc. of SIGIR'09
, pp. 540-547
-
-
Guan, Z.1
Bu, J.2
Mei, Q.3
Chen, C.4
Wang, C.5
-
14
-
-
85015559680
-
An algorithmic framework for performing collaborative filtering
-
ACM New York, NY, USA
-
I. Herlocker, J. Konstan, and J. Riedl. An algorithmic framework for performing collaborative filtering. Inv. Proc. of SIGIR 99, pages 230-237. ACM New York, NY, USA, 1999.
-
(1999)
Inv. Proc. of SIGIR
, vol.99
, pp. 230-237
-
-
Herlocker, I.1
Konstan, J.2
Riedl, J.3
-
15
-
-
3042697346
-
Evaluating collaborative filtering recommender systems
-
I. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22 (1): 5-53, 2004.
-
(2004)
ACM Transactions on Information Systems
, vol.22
, Issue.1
, pp. 5-53
-
-
Herlocker, I.1
Konstan, J.2
Terveen, L.3
Riedl, J.4
-
16
-
-
3042742744
-
Latent semantic models for collaborative filtering
-
T. Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22 (1):89-115, 2004.
-
(2004)
ACM Transactions on Information Systems
, vol.22
, Issue.1
, pp. 89-115
-
-
Hofmann, T.1
-
17
-
-
65449121157
-
Factorization meets the neighborhood: A multifaceted collaborative filtering model
-
ACM
-
Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proc. of SIGKDD 08, pages 426-434. ACM, 2008.
-
(2008)
Proc. of SIGKDD
, vol.8
, pp. 426-434
-
-
Koren, Y.1
-
18
-
-
67149143122
-
Who Rated What: A combination of SVD, correlation and frequent sequence mining
-
M. Kurucz, A. Benczúr, T. Kiss, I. Nagy, A. Szabó, and B. Torma. Who Rated What: a combination of SVD, correlation and frequent sequence mining. In Proc. KDD Cup and Workshop, volume 23, pages 720-727, 2007.
-
(2007)
Proc. KDD Cup and Workshop
, vol.23
, pp. 720-727
-
-
Kurucz, M.1
Benczúr, A.2
Kiss, T.3
Nagy, I.4
Szabó, A.5
Torma, B.6
-
19
-
-
0037252945
-
Amazon, com recommendations: Item-to-item collaborative filtering
-
G. Linden, B. Smith, and J. York. Amazon, com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 2003.
-
(2003)
IEEE Internet Computing
-
-
Linden, G.1
Smith, B.2
York, J.3
-
20
-
-
57349097660
-
EigenRank: A ranking-oriented approach to collaborative filtering
-
ACM New York, NY, USA
-
N. Liu and Q. Yang. EigenRank: a ranking-oriented approach to collaborative filtering. In Proc. of SIGIR 08, pages 83-90. ACM New York, NY, USA, 2008.
-
(2008)
Proc. of SIGIR 08
, pp. 83-90
-
-
Liu, N.1
Yang, Q.2
-
21
-
-
57349156602
-
BrowseRank: Letting web users vote for page importance
-
ACM New York, NY, USA
-
Y. Liu, B. Gao, T. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. BrowseRank: letting web users vote for page importance. In Proc. of SIGIR 08, pages 451-458. ACM New York, NY, USA, 2008.
-
(2008)
Proc. of SIGIR
, vol.8
, pp. 451-458
-
-
Liu, Y.1
Gao, B.2
Liu, T.3
Zhang, Y.4
Ma, Z.5
He, S.6
Li, H.7
-
22
-
-
36448972659
-
Effective missing data prediction for collaborative filtering
-
ACM New York, NY, USA
-
H. Ma, I. King, and M. Lyu. Effective missing data prediction for collaborative filtering. In Proc. of SIGIR 07, pages 39-46. ACM New York, NY, USA, 2007.
-
(2007)
Proc. of SIGIR
, vol.7
, pp. 39-46
-
-
Ma, H.1
King, I.2
Lyu, M.3
-
23
-
-
72249094128
-
Learning to recommend with social trust ensemble
-
ACM
-
H. Ma, I. King, and M. Lyu. Learning to recommend with social trust ensemble. In Proc. of ACM SIGIR'09, pages 203-210. ACM, 2009.
-
(2009)
Proc. of ACM SIGIR'09
, pp. 203-210
-
-
Ma, H.1
King, I.2
Lyu, M.3
-
26
-
-
0001391984
-
Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach
-
Stanford, California
-
D. Pennock, E. Horvitz, S. Lawrence, and C. Giles. Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach. In Proceedings of UAI 00, pages 473-480. Stanford, California, 2000.
-
(2000)
Proceedings of UAI 00
, pp. 473-480
-
-
Pennock, D.1
Horvitz, E.2
Lawrence, S.3
Giles, C.4
-
29
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
ACM New York, NY, USA
-
B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In Proc. of WWW 01, pages 285-295. ACM New York, NY, USA, 2001.
-
(2001)
Proc. of WWW 01
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Reidl, J.4
-
30
-
-
85119665974
-
Analysis of recommendation algorithms for e-commerce
-
New York, NY, USA, ACM
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation algorithms for e-commerce. In Proc. of EC 00, pages 158-167, New York, NY, USA, 2000. ACM.
-
(2000)
Proc. of EC 00
, pp. 158-167
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
31
-
-
1942516799
-
Flexible mixture model for collaborative filtering. In
-
NY, USA
-
L. Si and R. Jin. Flexible mixture model for collaborative filtering. In Proc. of ICML'03. ACM, NY, USA, 2003.
-
(2003)
Proc. of ICML'03. ACM
-
-
Si, L.1
Jin, R.2
-
33
-
-
79952388120
-
A classical predictive modeling approach for Task Who rated what? of the KDD CUP 2007
-
J. Sueiras, A. Salafranca, and J. Florez. A classical predictive modeling approach for Task "Who rated what?" of the KDD CUP 2007. Proceedings of the KDD Cup, page 34, 2007.
-
(2007)
Proceedings of the KDD Cup
, pp. 34
-
-
Sueiras, J.1
Salafranca, A.2
Florez, J.3
-
35
-
-
33750345680
-
Unifying user-based and item-based collaborative filtering approaches by similarity fusion
-
ACM New York, NY, USA
-
J. Wang, A. De Vries, and M. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proc. of SIGIR 2006, pages 501-508. ACM New York, NY, USA, 2006.
-
(2006)
Proc. of SIGIR 2006
, pp. 501-508
-
-
Wang, J.1
De Vries, A.2
Reinders, M.3
-
37
-
-
74549139149
-
A social recommendation framework based on multi-scale continuous conditional random fields
-
ACM
-
X. Xin, I. King, H. Deng, and M. Lyu. A social recommendation framework based on multi-scale continuous conditional random fields. In Proc. of CIKM'09, pages 1247-1256. ACM, 2009.
-
(2009)
Proc. of CIKM'09
, pp. 1247-1256
-
-
Xin, X.1
King, I.2
Deng, H.3
Lyu, M.4
-
38
-
-
84885578920
-
AndZ. Chen. Scalable collaborative filtering using cluster-based smoothing
-
ACM New York, NY, USA
-
G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, andZ. Chen. Scalable collaborative filtering using cluster-based smoothing. In Proc. of SIGIR 2005, pages 114-121. ACM New York, NY, USA, 2005.
-
(2005)
Proc. of SIGIR 2005
, pp. 114-121
-
-
Xue, G.1
Lin, C.2
Yang, Q.3
Xi, W.4
Zeng, H.5
Yu, Y.6
-
39
-
-
72449152230
-
Fast nonparametric matrix factorization for large-scale collaborative filtering
-
ACM, NY, USA
-
K. Yu, S. Zhu, J. Lafferty, and Y Gong. Fast nonparametric matrix factorization for large-scale collaborative filtering. In Proc. of SIGlR'09, pages 211-218. ACM, NY, USA, 2009.
-
(2009)
Proc. of SIGlR'09
, pp. 211-218
-
-
Yu, K.1
Zhu, S.2
Lafferty, J.3
Gong, Y.4
-
40
-
-
36448969351
-
Efficient bayesian hierarchical user modeling for recommendation system
-
ACM
-
Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling for recommendation system. In Proc. of SIGIR 2007, pages 47-54. ACM, 2007.
-
(2007)
Proc. of SIGIR 2007
, pp. 47-54
-
-
Zhang, Y.1
Koren, J.2
|