메뉴 건너뛰기




Volumn , Issue , 2007, Pages 39-46

Effective missing data prediction for collaborative filtering

Author keywords

Collaborative filtering; Data prediction; Data sparsity; Recommender system

Indexed keywords

ALGORITHMS; DATA STORAGE EQUIPMENT; INFORMATION ANALYSIS; USER INTERFACES;

EID: 36448972659     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1277741.1277751     Document Type: Article
Times cited : (400)

References (22)
  • 1
    • 14344253490 scopus 로고    scopus 로고
    • Unifying collaborative and content-based filtering
    • J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In Proc. of ICML, 2004.
    • (2004) Proc. of ICML
    • Basilico, J.1    Hofmann, T.2
  • 2
    • 0002051628 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proc. of UAI, 1998.
    • (1998) Proc. of UAI
    • Breese, J.S.1    Heckerman, D.2    Kadie, C.3
  • 3
    • 0036993076 scopus 로고    scopus 로고
    • Collaborative filtering with privacy via factor analysis
    • J. Canny. Collaborative filtering with privacy via factor analysis. In Proc. of SIGIR, 2002.
    • (2002) Proc. of SIGIR
    • Canny, J.1
  • 5
    • 3042821101 scopus 로고    scopus 로고
    • Item-based top-n recommendation
    • M. Deshpande and G. Karypis. Item-based top-n recommendation. ACM Trans. Inf. Syst., 22(1): 143-177, 2004.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 143-177
    • Deshpande, M.1    Karypis, G.2
  • 6
    • 3042829247 scopus 로고    scopus 로고
    • An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
    • J. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information Retrieval, 5:287-310, 2002.
    • (2002) Information Retrieval , vol.5 , pp. 287-310
    • Herlocker, J.1    Konstan, J.A.2    Riedl, J.3
  • 8
    • 1542377533 scopus 로고    scopus 로고
    • Collaborative filtering via gaussian probabilistic latent semantic analysis
    • T. Hofmanu. Collaborative filtering via gaussian probabilistic latent semantic analysis. In Proc. of SIGIR, 2003.
    • (2003) Proc. of SIGIR
    • Hofmanu, T.1
  • 9
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22(1):89-115, 2004.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 10
    • 8644230345 scopus 로고    scopus 로고
    • An automatic weighting scheme for collaborative filtering
    • R. Jin, J. Y. Chai, and L. Si. An automatic weighting scheme for collaborative filtering. In Proc. of SIGIR, 2004.
    • (2004) Proc. of SIGIR
    • Jin, R.1    Chai, J.Y.2    Si, L.3
  • 11
    • 0013271231 scopus 로고    scopus 로고
    • Clustering for collaborative filtering applications
    • A. Kohrs and B. Merialdo. Clustering for collaborative filtering applications. In Proc. of CIMCA, 1999.
    • (1999) Proc. of CIMCA
    • Kohrs, A.1    Merialdo, B.2
  • 12
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • Jan/Feb
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, pages 76-80, Jan/Feb 2003.
    • (2003) IEEE Internet Computing , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 13
    • 8644228708 scopus 로고    scopus 로고
    • A collaborative filtering algorithm and evaluation metric that accurately model the user experience
    • M. R. McLaughlin and J. L. Herlocker. A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In Proc. of SIGIR, 2004.
    • (2004) Proc. of SIGIR
    • McLaughlin, M.R.1    Herlocker, J.L.2
  • 14
    • 0001391984 scopus 로고    scopus 로고
    • Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach
    • D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach. In Proc. of UAI, 2000.
    • (2000) Proc. of UAI
    • Pennock, D.M.1    Horvitz, E.2    Lawrence, S.3    Giles, C.L.4
  • 15
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In Proc. of ICML, 2005.
    • (2005) Proc. of ICML
    • Rennie, J.D.M.1    Srebro, N.2
  • 19
    • 1942516799 scopus 로고    scopus 로고
    • Flexible mixture model for collaborative filtering
    • L. Si and R. Jin. Flexible mixture model for collaborative filtering. In Proc. of ICML, 2003.
    • (2003) Proc. of ICML
    • Si, L.1    Jin, R.2
  • 21
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • J. Wang, A. P. de Vries, and M. J. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proc. of SIGIR, 2006.
    • (2006) Proc. of SIGIR
    • Wang, J.1    de Vries, A.P.2    Reinders, M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.