메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1247-1256

A social recommendation framework based on multi-scale continuous conditional random fields

Author keywords

Collaborative filtering; Markov Chain Monte Carlo; Multi scale continuous conditional random fields; Social recommendation

Indexed keywords

COLLABORATIVE FILTERING; COMPUTING COMPLEXITY; CONDITIONAL RANDOM FIELD; EDGE FEATURES; ESTIMATION METHODS; FEATURE COMBINATION; INFERENCE PROCESS; LINEAR INTEGRATION; MARKOV CHAIN MONTE CARLO; MARKOV PROPERTY; MULTISCALES; REAL WORLD DATA; RECOMMENDATION TECHNIQUES; RECOMMENDER SYSTEMS; SOCIAL NETWORKS; STRAIGHT-FORWARD METHOD; UNIFIED APPROACH;

EID: 74549139149     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1645953.1646111     Document Type: Conference Paper
Times cited : (44)

References (38)
  • 3
    • 80052126248 scopus 로고    scopus 로고
    • Trust based recommender system for the semantic web
    • P. Bedi, H. Kaur, and S. Marwaha. Trust based recommender system for the semantic web. In Proceedings of IJCAI 2007, pages 2677-2682, 2007.
    • (2007) Proceedings of IJCAI , pp. 2677-2682
    • Bedi, P.1    Kaur, H.2    Marwaha, S.3
  • 4
    • 0002051628 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of UAI '98, 1998.
    • (1998) Proceedings of UAI '98
    • Breese, J.1    Heckerman, D.2    Kadie, C.3
  • 7
    • 58149199799 scopus 로고    scopus 로고
    • Latent grouping models for user preference prediction
    • E. Savia. K. Puolamaki, S. Kaski. Latent grouping models for user preference prediction. Machine Learning, 74:75-109, 2009.
    • (2009) Machine Learning , vol.74 , pp. 75-109
    • Savia, E.1    Puolamaki, K.2    Kaski, S.3
  • 8
    • 74549163142 scopus 로고    scopus 로고
    • Log-linear Models and Conditional Random Fields
    • C. Elkan. Log-linear Models and Conditional Random Fields. In Tutorial notes at CIKM '08, 2008.
    • (2008) Tutorial notes at CIKM '08
    • Elkan, C.1
  • 9
    • 33745922868 scopus 로고    scopus 로고
    • Generating predictive movie recommendations from trust in social networks
    • Springer
    • J. Golbeck. Generating predictive movie recommendations from trust in social networks. In Proceedings of iTrust '06, pages 93-104. Springer, 2006.
    • (2006) Proceedings of iTrust '06 , pp. 93-104
    • Golbeck, J.1
  • 10
    • 0003678451 scopus 로고
    • Markov fields on finite graphs and lattices. Unpublished
    • manuscript
    • J. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished manuscript, 1971.
    • (1971)
    • Hammersley, J.1    Clifford, P.2
  • 11
    • 5044223520 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labeling
    • Los Alamitos, CA, USA, IEEE Computer Society
    • X. He, R. S. Zemel, and M. A. Carreira-Perpinan. Multiscale conditional random fields for image labeling. In Proceedings of CVPR '04, volume 2, pages 695-702, Los Alamitos, CA, USA, 2004. IEEE Computer Society.
    • (2004) Proceedings of CVPR '04 , vol.2 , pp. 695-702
    • He, X.1    Zemel, R.S.2    Carreira-Perpinan, M.A.3
  • 12
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • New York, NY, USA, ACM
    • J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In Proceedings of SIGIR '99, pages 230-237, New York, NY, USA, 1999. ACM.
    • (1999) Proceedings of SIGIR '99 , pp. 230-237
    • Herlocker, J.L.1    Konstan, J.A.2    Borchers, A.3    Riedl, J.4
  • 13
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22(1):89-115, 2004.
    • (2004) ACM Transactions on Information Systems , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 14
    • 8644230345 scopus 로고    scopus 로고
    • An automatic weighting scheme for collaborative filtering
    • New York, NY, USA, ACM
    • R. Jin, J. Y. Chai, and L. Si. An automatic weighting scheme for collaborative filtering. In Proceedings of SIGIR '04, pages 337-344, New York, NY, USA, 2004. ACM.
    • (2004) Proceedings of SIGIR '04 , pp. 337-344
    • Jin, R.1    Chai, J.Y.2    Si, L.3
  • 15
    • 9444286980 scopus 로고    scopus 로고
    • Interactive information extraction with constrained conditional random fields
    • T. T. Kristjansson, A. Culotta, P. A. Viola, and A. Mccallum. Interactive information extraction with constrained conditional random fields. In Proceedings of AAAI '04, pages 412-418, 2004.
    • (2004) Proceedings of AAAI '04 , pp. 412-418
    • Kristjansson, T.T.1    Culotta, A.2    Viola, P.A.3    Mccallum, A.4
  • 16
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML 2001, pages 282-289, 2001.
    • (2001) Proceedings of ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 17
  • 18
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, pages 76-80, 2003.
    • (2003) IEEE Internet computing , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 20
    • 36448972659 scopus 로고    scopus 로고
    • Effective missing data prediction for collaborative filtering
    • H. Ma, I. King, and M. Lyu. Effective missing data prediction for collaborative filtering. In Proceedings of SIGIR '07, pages 39-46, 2007.
    • (2007) Proceedings of SIGIR '07 , pp. 39-46
    • Ma, H.1    King, I.2    Lyu, M.3
  • 21
    • 72249094128 scopus 로고    scopus 로고
    • Learning to recommend with social trust ensemble
    • H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In Proceeding of SIGIR '09, pages 203-210, 2009.
    • (2009) Proceeding of SIGIR '09 , pp. 203-210
    • Ma, H.1    King, I.2    Lyu, M.R.3
  • 22
    • 0036932094 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering for improved recommendations
    • P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In Proceedings of AAAI, pages 187-192, 2002.
    • (2002) Proceedings of AAAI , pp. 187-192
    • Melville, P.1    Mooney, R.2    Nagarajan, R.3
  • 23
    • 84865470935 scopus 로고    scopus 로고
    • Investigation of the Effectiveness of Tag-Based Contextual Collaborative Filtering in Website Recommendation
    • R. Nakamoto, S. Nakajima, J. Miyazaki, S. Uemura, and H. Kato. Investigation of the Effectiveness of Tag-Based Contextual Collaborative Filtering in Website Recommendation. Lecture Notes in Electrical Engineering, 4:309, 2008.
    • (2008) Lecture Notes in Electrical Engineering , vol.4 , pp. 309
    • Nakamoto, R.1    Nakajima, S.2    Miyazaki, J.3    Uemura, S.4    Kato, H.5
  • 24
    • 32844472422 scopus 로고    scopus 로고
    • Trust in recommender systems
    • New York, NY, USA, ACM
    • J. O'Donovan and B. Smyth. Trust in recommender systems. In Proceedings of IUI '05, pages 167-174, New York, NY, USA, 2005. ACM.
    • (2005) Proceedings of IUI '05 , pp. 167-174
    • O'Donovan, J.1    Smyth, B.2
  • 25
    • 0001391984 scopus 로고    scopus 로고
    • Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach
    • Stanford, California
    • D. Pennock, E. Horvitz, S. Lawrence, and C. Giles. Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach. In Proceedings of UAI, pages 473-480. Stanford, California, 2000.
    • (2000) Proceedings of UAI , pp. 473-480
    • Pennock, D.1    Horvitz, E.2    Lawrence, S.3    Giles, C.4
  • 29
    • 34547983260 scopus 로고    scopus 로고
    • Restricted boltzmann machines for collaborative filtering
    • New York, NY, USA, ACM
    • R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In Proceedings of ICML '07, pages 791-798, New York, NY, USA, 2007. ACM.
    • (2007) Proceedings of ICML '07 , pp. 791-798
    • Salakhutdinov, R.1    Mnih, A.2    Hinton, G.3
  • 30
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • ACM New York, NY, USA
    • B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In Proceedings of WWW, pages 285-295. ACM New York, NY, USA, 2001.
    • (2001) Proceedings of WWW , pp. 285-295
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Reidl, J.4
  • 31
    • 84865653318 scopus 로고    scopus 로고
    • Tagommenders: Connecting Users to Items through Tags
    • Madrid, Spain
    • S. Sen, J. Vig and J. Riedl. Tagommenders: Connecting Users to Items through Tags. In Proceedings of the WWW 2009. Madrid, Spain, 2009.
    • (2009) Proceedings of the WWW 2009
    • Sen, S.1    Vig, J.2    Riedl, J.3
  • 32
    • 1942516799 scopus 로고    scopus 로고
    • Flexible mixture model for collaborative filtering
    • L. Si and R. Jin. Flexible mixture model for collaborative filtering. In Proceedings of ICML 2003, volume 20, page 704, 2003.
    • (2003) Proceedings of ICML 2003 , vol.20 , pp. 704
    • Si, L.1    Jin, R.2
  • 34
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • J. Wang, A. De Vries, and M. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proceedings of SIGIR '06, pages 501-508, 2006.
    • (2006) Proceedings of SIGIR '06 , pp. 501-508
    • Wang, J.1    De Vries, A.2    Reinders, M.3
  • 35
    • 70349243798 scopus 로고    scopus 로고
    • Academic conference homepage understanding using constrained hierarchical conditional random fields
    • New York, NY, USA, ACM
    • X. Xin, J. Li, J. Tang, and Q. Luo. Academic conference homepage understanding using constrained hierarchical conditional random fields. In Proceeding of CIKM '08, pages 1301-1310, New York, NY, USA, 2008. ACM.
    • (2008) Proceeding of CIKM '08 , pp. 1301-1310
    • Xin, X.1    Li, J.2    Tang, J.3    Luo, Q.4
  • 36
    • 84885578920 scopus 로고    scopus 로고
    • Scalable collaborative filtering using cluster-based smoothing
    • ACM New York, NY, USA
    • G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and Z. Chen. Scalable collaborative filtering using cluster-based smoothing. In Proceedings of SIGIR '05, pages 114-121. ACM New York, NY, USA, 2005.
    • (2005) Proceedings of SIGIR '05 , pp. 114-121
    • Xue, G.1    Lin, C.2    Yang, Q.3    Xi, W.4    Zeng, H.5    Yu, Y.6    Chen, Z.7
  • 37
    • 36448969351 scopus 로고    scopus 로고
    • Efficient bayesian hierarchical user modeling for recommendation system
    • ACM New York, NY, USA
    • Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling for recommendation system. In Proceedings of SIGIR '07, pages 47-54. ACM New York, NY, USA, 2007.
    • (2007) Proceedings of SIGIR '07 , pp. 47-54
    • Zhang, Y.1    Koren, J.2
  • 38
    • 85162001105 scopus 로고    scopus 로고
    • Stochastic relational models for large-scale dyadic data using MCMC
    • S. Zhu, K. Yu, and Y. Gong. Stochastic relational models for large-scale dyadic data using MCMC. In Proceedings of NIPS, 2008.
    • (2008) Proceedings of NIPS
    • Zhu, S.1    Yu, K.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.