메뉴 건너뛰기




Volumn 53, Issue 2, 2011, Pages 369-387

Correction of confounding bias in non-randomized studies by appropriate weighting

Author keywords

Instrumental variable; Non randomized studies; Propensity score; Randomized controlled trials; Regression model

Indexed keywords

CLASSICAL APPROACH; CONFOUNDER; COVARIATES; INSTRUMENTAL VARIABLES; MULTIPLE REGRESSION MODELLING; NON-RANDOMIZED STUDY; PROPENSITY SCORE; RANDOMISATION; RANDOMIZED CONTROLLED TRIAL; REGRESSION MODELLING;

EID: 79952205430     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201000154     Document Type: Article
Times cited : (15)

References (47)
  • 2
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin, P. (2007). The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 26, 3078-3094.
    • (2007) Statistics in Medicine , vol.26 , pp. 3078-3094
    • Austin, P.1
  • 3
    • 33847133828 scopus 로고    scopus 로고
    • On estimating treatment effects under non-compliance in randomized clinical trials: are intent-to-treat or instrumental variable analyses perfect solutions?
    • Bang, H. and Davis, C. E. (2007). On estimating treatment effects under non-compliance in randomized clinical trials: are intent-to-treat or instrumental variable analyses perfect solutions? Statistics in Medicine 26, 954-964.
    • (2007) Statistics in Medicine , vol.26 , pp. 954-964
    • Bang, H.1    Davis, C.E.2
  • 4
    • 0034702233 scopus 로고    scopus 로고
    • A comparison of observational studies and randomized, controlled trials
    • Benson, K. and Hartz, A. J. (2000). A comparison of observational studies and randomized, controlled trials. New England Journal of Medicine 342, 1878-1886.
    • (2000) New England Journal of Medicine , vol.342 , pp. 1878-1886
    • Benson, K.1    Hartz, A.J.2
  • 6
  • 7
    • 33646802964 scopus 로고    scopus 로고
    • Evaluating short-term drug effects using physician-specific prescribing preference as an instrumental variable
    • Brookhart, M. A., Wang, P. S., Solomon, D. H. and Schneeweiss, S. (2006). Evaluating short-term drug effects using physician-specific prescribing preference as an instrumental variable. Epidemiology 17, 268-275.
    • (2006) Epidemiology , vol.17 , pp. 268-275
    • Brookhart, M.A.1    Wang, P.S.2    Solomon, D.H.3    Schneeweiss, S.4
  • 8
    • 0034702175 scopus 로고    scopus 로고
    • Randomized, controlled trials, observational studies, and the hierarchy of research designs
    • Concato, J., Nirav Shah, M. P. H. and Horwitz, R. I. (2000). Randomized, controlled trials, observational studies, and the hierarchy of research designs. New England Journal of Medicine 342, 1887-1892.
    • (2000) New England Journal of Medicine , vol.342 , pp. 1887-1892
    • Concato, J.1    Nirav Shah, M.P.H.2    Horwitz, R.I.3
  • 9
    • 3543135271 scopus 로고    scopus 로고
    • Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • D'Agostino, R. B. (1998). Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine 17, 2265-2281.
    • (1998) Statistics in Medicine , vol.17 , pp. 2265-2281
    • D'Agostino, R.B.1
  • 10
    • 77956891487 scopus 로고
    • Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
    • Gail, M., Wieand, S. and Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71, 431-444.
    • (1984) Biometrika , vol.71 , pp. 431-444
    • Gail, M.1    Wieand, S.2    Piantadosi, S.3
  • 11
    • 85163246297 scopus 로고    scopus 로고
    • Comparison of Marginal Structural Models to a missing data approach illustrated by data on breast cancer chemotherapy. FDM Preprint No. 103, University of Freiburg.
    • Gall, C., Caputo, A. and Schumacher, M. (2010). Comparison of Marginal Structural Models to a missing data approach illustrated by data on breast cancer chemotherapy. FDM Preprint No. 103, University of Freiburg.
    • (2010)
    • Gall, C.1    Caputo, A.2    Schumacher, M.3
  • 12
    • 50449087323 scopus 로고    scopus 로고
    • Comments on "The performance of different propensity score methods for estimating marginal odds ratios"
    • Graf, E. and Schumacher, M. (2008). Comments on "The performance of different propensity score methods for estimating marginal odds ratios". Statistics in Medicine 27, 3915-3917.
    • (2008) Statistics in Medicine , vol.27 , pp. 3915-3917
    • Graf, E.1    Schumacher, M.2
  • 13
    • 0033853460 scopus 로고    scopus 로고
    • An introduction to instrumental variables for epidemiologists
    • Greenland, S. (2000). An introduction to instrumental variables for epidemiologists. International Journal of Epidemiology 29, 722-729.
    • (2000) International Journal of Epidemiology , vol.29 , pp. 722-729
    • Greenland, S.1
  • 14
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland, S., Robins, J. and Pearl, J. (1999). Confounding and collapsibility in causal inference. Statistical Science 14, 29-46.
    • (1999) Statistical Science , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.2    Pearl, J.3
  • 15
    • 78649829808 scopus 로고    scopus 로고
    • Comparative effectiveness of prostate cancer treatments: evaluating statistical adjustments for confounding in observational data
    • Hadley, J., Yabroff, K. R., Barrett, M. J., Penson, D. F., Saigal, C. S. and Potosky, A. L. (2010). Comparative effectiveness of prostate cancer treatments: evaluating statistical adjustments for confounding in observational data. Journal of the National Cancer Institute 102, 1780-1793.
    • (2010) Journal of the National Cancer Institute , vol.102 , pp. 1780-1793
    • Hadley, J.1    Yabroff, K.R.2    Barrett, M.J.3    Penson, D.F.4    Saigal, C.S.5    Potosky, A.L.6
  • 16
    • 33748106661 scopus 로고    scopus 로고
    • Instruments for causal inference: an epidemiologist's dream?
    • Hernan, M. A. and Robins, J. M. (2006). Instruments for causal inference: an epidemiologist's dream? Epidemiology 17, 360-372.
    • (2006) Epidemiology , vol.17 , pp. 360-372
    • Hernan, M.A.1    Robins, J.M.2
  • 19
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: a review
    • Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: a review. The Review of Economics and Statistics 86, 4-29.
    • (2004) The Review of Economics and Statistics , vol.86 , pp. 4-29
    • Imbens, G.W.1
  • 21
    • 0037108455 scopus 로고    scopus 로고
    • Modelling treatment effects on binary outcomes with grouped-treatment variables and individual covariates
    • Johnston, S. C., Henneman, T., McCulloch, C. E. and van der Lann, M. (2002). Modelling treatment effects on binary outcomes with grouped-treatment variables and individual covariates. American Journal of Epidemiology 156, 753-760.
    • (2002) American Journal of Epidemiology , vol.156 , pp. 753-760
    • Johnston, S.C.1    Henneman, T.2    Mcculloch, C.E.3    van der Lann, M.4
  • 23
    • 0032585188 scopus 로고    scopus 로고
    • The unpredictability paradox: review of empirical comparisons of randomised and non-randomised clinical trials
    • Kunz, R. and Oxman, A. D. (1998). The unpredictability paradox: review of empirical comparisons of randomised and non-randomised clinical trials. British Medical Journal 317, 1185-1190.
    • (1998) British Medical Journal , vol.317 , pp. 1185-1190
    • Kunz, R.1    Oxman, A.D.2
  • 24
    • 0033942150 scopus 로고    scopus 로고
    • Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches
    • Little, R. J. and Rubin, D. B. (2000). Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annual Review of Public Health 21, 121-145.
    • (2000) Annual Review of Public Health , vol.21 , pp. 121-145
    • Little, R.J.1    Rubin, D.B.2
  • 25
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
    • Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 23, 2937-2960.
    • (2004) Statistics in Medicine , vol.23 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 27
    • 53349127165 scopus 로고    scopus 로고
    • Systematic differences in treatment effect estimates between propensity score methods and logistic regression
    • Martens, E., Pestman, W., de Boer, A., Belitzer, S. and Klungel, O. (2008). Systematic differences in treatment effect estimates between propensity score methods and logistic regression. International Journal of Epidemiology 37, 1142-1147.
    • (2008) International Journal of Epidemiology , vol.37 , pp. 1142-1147
    • Martens, E.1    Pestman, W.2    de Boer, A.3    Belitzer, S.4    Klungel, O.5
  • 29
    • 0031814687 scopus 로고    scopus 로고
    • Econometrics in outcome research: the use of instrumental variables
    • Newhouse, J. P. and McClellan, M. (1998). Econometrics in outcome research: the use of instrumental variables. Annual Review of Public Health 19, 17-34.
    • (1998) Annual Review of Public Health , vol.19 , pp. 17-34
    • Newhouse, J.P.1    Mcclellan, M.2
  • 30
    • 70350574644 scopus 로고    scopus 로고
    • Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships
    • Rassen, J. A., Brookhart, M. A., Glynn, R. J., Mittleman, M. A. and Schneeweiss, S. (2009). Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships. Journal of Clinical Epidemiology 62, 1226-1232.
    • (2009) Journal of Clinical Epidemiology , vol.62 , pp. 1226-1232
    • Rassen, J.A.1    Brookhart, M.A.2    Glynn, R.J.3    Mittleman, M.A.4    Schneeweiss, S.5
  • 31
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins, J. M., Hernan, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550-560.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernan, M.A.2    Brumback, B.3
  • 32
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 33
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum, P. R. and Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 79, 516-524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 34
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials
    • Rubin, D. (2007). The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Statistics in Medicine 26, 20-36.
    • (2007) Statistics in Medicine , vol.26 , pp. 20-36
    • Rubin, D.1
  • 35
    • 42649089469 scopus 로고    scopus 로고
    • Evidence from nonrandomized studies: a case study on the estimation of causal effects
    • Schmoor, C., Caputo, A. and Schumacher, M. (2008). Evidence from nonrandomized studies: a case study on the estimation of causal effects. American Journal of Epidemiology 167, 1120-1129.
    • (2008) American Journal of Epidemiology , vol.167 , pp. 1120-1129
    • Schmoor, C.1    Caputo, A.2    Schumacher, M.3
  • 36
    • 0030045447 scopus 로고    scopus 로고
    • Randomized and non-randomized patients in clinical trials: experiences with comprehensive cohort studies
    • Schmoor, C., Olschewski, M. and Schumacher, M. (1996). Randomized and non-randomized patients in clinical trials: experiences with comprehensive cohort studies. Statistics in Medicine 15, 263-271.
    • (1996) Statistics in Medicine , vol.15 , pp. 263-271
    • Schmoor, C.1    Olschewski, M.2    Schumacher, M.3
  • 37
    • 0031022551 scopus 로고    scopus 로고
    • Effects of covariate omission and categorization when analysing randomized trials with the Cox model
    • Schmoor, C. and Schumacher, M. (1997). Effects of covariate omission and categorization when analysing randomized trials with the Cox model. Statistics in Medicine 16, 225-237.
    • (1997) Statistics in Medicine , vol.16 , pp. 225-237
    • Schmoor, C.1    Schumacher, M.2
  • 38
    • 0023433230 scopus 로고
    • The impact of heterogeneity on the comparison of survival times
    • Schumacher, M., Olschewski, M. and Schmoor, C. (1987). The impact of heterogeneity on the comparison of survival times. Statistics in Medicine 6, 773-784.
    • (1987) Statistics in Medicine , vol.6 , pp. 773-784
    • Schumacher, M.1    Olschewski, M.2    Schmoor, C.3
  • 39
    • 38849111846 scopus 로고    scopus 로고
    • Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure
    • Correction 27, 4615.
    • Senn, S., Graf, E. and Caputo, A. (2007). Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure. Statistics in Medicine 26, 5529-5544. Correction 27, 4615.
    • (2007) Statistics in Medicine , vol.26 , pp. 5529-5544
    • Senn, S.1    Graf, E.2    Caputo, A.3
  • 40
    • 18844452973 scopus 로고    scopus 로고
    • Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review
    • Shah, B., Laupacis, A., Hux, J. and Austin, P. (2005). Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. Journal of Clinical Epidemiology 58, 550-559.
    • (2005) Journal of Clinical Epidemiology , vol.58 , pp. 550-559
    • Shah, B.1    Laupacis, A.2    Hux, J.3    Austin, P.4
  • 41
    • 17844371350 scopus 로고    scopus 로고
    • Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes
    • Smith, C. T., Williamson, P. R. and Marson, A. G. (2005). Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes. Statistics in Medicine 24, 1307-1319.
    • (2005) Statistics in Medicine , vol.24 , pp. 1307-1319
    • Smith, C.T.1    Williamson, P.R.2    Marson, A.G.3
  • 42
    • 77949408623 scopus 로고    scopus 로고
    • Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification
    • Stampf, S., Graf, E., Schmoor, C. and Schumacher, M. (2010). Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification. Statistics in Medicine 29, 760-769.
    • (2010) Statistics in Medicine , vol.29 , pp. 760-769
    • Stampf, S.1    Graf, E.2    Schmoor, C.3    Schumacher, M.4
  • 43
    • 33846436128 scopus 로고    scopus 로고
    • Analysis of observational studies in the presence of treatment selction bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods
    • Stukel, T. A., Fisher, E. S., Wennberg, D. E., Alter, D. A., Gottlieb, D. J. and Vermeulen, M. J. (2007). Analysis of observational studies in the presence of treatment selction bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods. Journal of the American Medical Association 297, 278-285.
    • (2007) Journal of the American Medical Association , vol.297 , pp. 278-285
    • Stukel, T.A.1    Fisher, E.S.2    Wennberg, D.E.3    Alter, D.A.4    Gottlieb, D.J.5    Vermeulen, M.J.6
  • 44
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • Stürmer, T., Joshi, M., Glynn, R. J., Avorn, J., Rothmann, K. J. and Schneeweiss, S. (2006). A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. Journal of Clinical Epidemiology 59, 437-461.
    • (2006) Journal of Clinical Epidemiology , vol.59 , pp. 437-461
    • Stürmer, T.1    Joshi, M.2    Glynn, R.J.3    Avorn, J.4    Rothmann, K.J.5    Schneeweiss, S.6
  • 45
    • 77953939249 scopus 로고    scopus 로고
    • Using instrumental variables to adjust for treatment contamination in randomised controlled trials
    • Sussman, J. B. and Hayward, R. A. (2010). Using instrumental variables to adjust for treatment contamination in randomised controlled trials. British Medical Journal 340, 1181-1184.
    • (2010) British Medical Journal , vol.340 , pp. 1181-1184
    • Sussman, J.B.1    Hayward, R.A.2
  • 46
    • 0003969894 scopus 로고
    • Principles of Econometrics
    • Wiley, New York.
    • Theil, H. (1971). Principles of Econometrics. Wiley, New York.
    • (1971)
    • Theil, H.1
  • 47
    • 0033619529 scopus 로고    scopus 로고
    • Explaining heterogeneity in meta-analysis: a comparison of methods
    • Thompson, S. G. and Sharp, S. J. (1999). Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine 18, 2693-2708.
    • (1999) Statistics in Medicine , vol.18 , pp. 2693-2708
    • Thompson, S.G.1    Sharp, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.