-
1
-
-
0346880128
-
Identification of causal effects using instrumental variables
-
Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444-455.
-
(1996)
Journal of the American Statistical Association
, vol.91
, pp. 444-455
-
-
Angrist, J.D.1
Imbens, G.W.2
Rubin, D.B.3
-
2
-
-
34249863765
-
The performance of different propensity score methods for estimating marginal odds ratios
-
Austin, P. (2007). The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 26, 3078-3094.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 3078-3094
-
-
Austin, P.1
-
3
-
-
33847133828
-
On estimating treatment effects under non-compliance in randomized clinical trials: are intent-to-treat or instrumental variable analyses perfect solutions?
-
Bang, H. and Davis, C. E. (2007). On estimating treatment effects under non-compliance in randomized clinical trials: are intent-to-treat or instrumental variable analyses perfect solutions? Statistics in Medicine 26, 954-964.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 954-964
-
-
Bang, H.1
Davis, C.E.2
-
4
-
-
0034702233
-
A comparison of observational studies and randomized, controlled trials
-
Benson, K. and Hartz, A. J. (2000). A comparison of observational studies and randomized, controlled trials. New England Journal of Medicine 342, 1878-1886.
-
(2000)
New England Journal of Medicine
, vol.342
, pp. 1878-1886
-
-
Benson, K.1
Hartz, A.J.2
-
5
-
-
70649113093
-
A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies
-
Bosco J. L. F., Silliman, R. A., Thwin, S. S., Geiger, A. M., Buist, D. S. M., Prout, M. N., Yood, M. U., Haque, R., Wei, F. and Lash, T. L. (2010). A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies. Journal of Clinical Epidemiology 63, 64-74.
-
(2010)
Journal of Clinical Epidemiology
, vol.63
, pp. 64-74
-
-
Bosco, J.L.F.1
Silliman, R.A.2
Thwin, S.S.3
Geiger, A.M.4
Buist, D.S.M.5
Prout, M.N.6
Yood, M.U.7
Haque, R.8
Wei, F.9
Lash, T.L.10
-
6
-
-
77953519101
-
Instrumental variable methods in comparative safety and effectiveness research
-
Brookhart, M. A., Rassen, J. A. and Schneeweiss, S. (2010). Instrumental variable methods in comparative safety and effectiveness research. Pharmacoepidemiology and Drug Safety 19, 537-554.
-
(2010)
Pharmacoepidemiology and Drug Safety
, vol.19
, pp. 537-554
-
-
Brookhart, M.A.1
Rassen, J.A.2
Schneeweiss, S.3
-
7
-
-
33646802964
-
Evaluating short-term drug effects using physician-specific prescribing preference as an instrumental variable
-
Brookhart, M. A., Wang, P. S., Solomon, D. H. and Schneeweiss, S. (2006). Evaluating short-term drug effects using physician-specific prescribing preference as an instrumental variable. Epidemiology 17, 268-275.
-
(2006)
Epidemiology
, vol.17
, pp. 268-275
-
-
Brookhart, M.A.1
Wang, P.S.2
Solomon, D.H.3
Schneeweiss, S.4
-
8
-
-
0034702175
-
Randomized, controlled trials, observational studies, and the hierarchy of research designs
-
Concato, J., Nirav Shah, M. P. H. and Horwitz, R. I. (2000). Randomized, controlled trials, observational studies, and the hierarchy of research designs. New England Journal of Medicine 342, 1887-1892.
-
(2000)
New England Journal of Medicine
, vol.342
, pp. 1887-1892
-
-
Concato, J.1
Nirav Shah, M.P.H.2
Horwitz, R.I.3
-
9
-
-
3543135271
-
Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
-
D'Agostino, R. B. (1998). Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine 17, 2265-2281.
-
(1998)
Statistics in Medicine
, vol.17
, pp. 2265-2281
-
-
D'Agostino, R.B.1
-
10
-
-
77956891487
-
Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
-
Gail, M., Wieand, S. and Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71, 431-444.
-
(1984)
Biometrika
, vol.71
, pp. 431-444
-
-
Gail, M.1
Wieand, S.2
Piantadosi, S.3
-
11
-
-
85163246297
-
-
Comparison of Marginal Structural Models to a missing data approach illustrated by data on breast cancer chemotherapy. FDM Preprint No. 103, University of Freiburg.
-
Gall, C., Caputo, A. and Schumacher, M. (2010). Comparison of Marginal Structural Models to a missing data approach illustrated by data on breast cancer chemotherapy. FDM Preprint No. 103, University of Freiburg.
-
(2010)
-
-
Gall, C.1
Caputo, A.2
Schumacher, M.3
-
12
-
-
50449087323
-
Comments on "The performance of different propensity score methods for estimating marginal odds ratios"
-
Graf, E. and Schumacher, M. (2008). Comments on "The performance of different propensity score methods for estimating marginal odds ratios". Statistics in Medicine 27, 3915-3917.
-
(2008)
Statistics in Medicine
, vol.27
, pp. 3915-3917
-
-
Graf, E.1
Schumacher, M.2
-
13
-
-
0033853460
-
An introduction to instrumental variables for epidemiologists
-
Greenland, S. (2000). An introduction to instrumental variables for epidemiologists. International Journal of Epidemiology 29, 722-729.
-
(2000)
International Journal of Epidemiology
, vol.29
, pp. 722-729
-
-
Greenland, S.1
-
14
-
-
0002864224
-
Confounding and collapsibility in causal inference
-
Greenland, S., Robins, J. and Pearl, J. (1999). Confounding and collapsibility in causal inference. Statistical Science 14, 29-46.
-
(1999)
Statistical Science
, vol.14
, pp. 29-46
-
-
Greenland, S.1
Robins, J.2
Pearl, J.3
-
15
-
-
78649829808
-
Comparative effectiveness of prostate cancer treatments: evaluating statistical adjustments for confounding in observational data
-
Hadley, J., Yabroff, K. R., Barrett, M. J., Penson, D. F., Saigal, C. S. and Potosky, A. L. (2010). Comparative effectiveness of prostate cancer treatments: evaluating statistical adjustments for confounding in observational data. Journal of the National Cancer Institute 102, 1780-1793.
-
(2010)
Journal of the National Cancer Institute
, vol.102
, pp. 1780-1793
-
-
Hadley, J.1
Yabroff, K.R.2
Barrett, M.J.3
Penson, D.F.4
Saigal, C.S.5
Potosky, A.L.6
-
16
-
-
33748106661
-
Instruments for causal inference: an epidemiologist's dream?
-
Hernan, M. A. and Robins, J. M. (2006). Instruments for causal inference: an epidemiologist's dream? Epidemiology 17, 360-372.
-
(2006)
Epidemiology
, vol.17
, pp. 360-372
-
-
Hernan, M.A.1
Robins, J.M.2
-
19
-
-
1842429563
-
Nonparametric estimation of average treatment effects under exogeneity: a review
-
Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: a review. The Review of Economics and Statistics 86, 4-29.
-
(2004)
The Review of Economics and Statistics
, vol.86
, pp. 4-29
-
-
Imbens, G.W.1
-
20
-
-
0035880296
-
Comparison of evidence of treatment effects in randomized an nonrandomized studies
-
Ioannidis, J. P. A., Haidich, A. B., Pappa, M., Kokori, S. I., Tektonidou, M. G., Contopoulos-Ioannidis, D. G. and Lau, J. (2001). Comparison of evidence of treatment effects in randomized an nonrandomized studies. Journal of the American Medical Association 286, 821-830.
-
(2001)
Journal of the American Medical Association
, vol.286
, pp. 821-830
-
-
Ioannidis, J.P.A.1
Haidich, A.B.2
Pappa, M.3
Kokori, S.I.4
Tektonidou, M.G.5
Contopoulos-Ioannidis, D.G.6
Lau, J.7
-
21
-
-
0037108455
-
Modelling treatment effects on binary outcomes with grouped-treatment variables and individual covariates
-
Johnston, S. C., Henneman, T., McCulloch, C. E. and van der Lann, M. (2002). Modelling treatment effects on binary outcomes with grouped-treatment variables and individual covariates. American Journal of Epidemiology 156, 753-760.
-
(2002)
American Journal of Epidemiology
, vol.156
, pp. 753-760
-
-
Johnston, S.C.1
Henneman, T.2
Mcculloch, C.E.3
van der Lann, M.4
-
22
-
-
11144249296
-
Methods to assess intended effects of drug treatment in observational studies are reviewed
-
Klungel, O. H., Martens, E. P., Psaty, B. M., Grobbee, D. E., Sullivan, S. D., Stricker, B. H. Ch., Leufkens, H. G. M. and de Boer, A. (2004). Methods to assess intended effects of drug treatment in observational studies are reviewed. Journal of Clinical Epidemiology 57, 1223-1231.
-
(2004)
Journal of Clinical Epidemiology
, vol.57
, pp. 1223-1231
-
-
Klungel, O.H.1
Martens, E.P.2
Psaty, B.M.3
Grobbee, D.E.4
Sullivan, S.D.5
Stricker, B.H.C.6
Leufkens, H.G.M.7
de Boer, A.8
-
23
-
-
0032585188
-
The unpredictability paradox: review of empirical comparisons of randomised and non-randomised clinical trials
-
Kunz, R. and Oxman, A. D. (1998). The unpredictability paradox: review of empirical comparisons of randomised and non-randomised clinical trials. British Medical Journal 317, 1185-1190.
-
(1998)
British Medical Journal
, vol.317
, pp. 1185-1190
-
-
Kunz, R.1
Oxman, A.D.2
-
24
-
-
0033942150
-
Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches
-
Little, R. J. and Rubin, D. B. (2000). Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annual Review of Public Health 21, 121-145.
-
(2000)
Annual Review of Public Health
, vol.21
, pp. 121-145
-
-
Little, R.J.1
Rubin, D.B.2
-
25
-
-
4444230264
-
Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
-
Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 23, 2937-2960.
-
(2004)
Statistics in Medicine
, vol.23
, pp. 2937-2960
-
-
Lunceford, J.K.1
Davidian, M.2
-
26
-
-
33646809746
-
Instrumental variables: applications and limitations
-
Martens, E. P., Pestman, W. R., de Boer, A., Berlitser, S. V. and Klungel, O. H. (2006). Instrumental variables: applications and limitations. Epidemiology 17, 260-267.
-
(2006)
Epidemiology
, vol.17
, pp. 260-267
-
-
Martens, E.P.1
Pestman, W.R.2
de Boer, A.3
Berlitser, S.V.4
Klungel, O.H.5
-
27
-
-
53349127165
-
Systematic differences in treatment effect estimates between propensity score methods and logistic regression
-
Martens, E., Pestman, W., de Boer, A., Belitzer, S. and Klungel, O. (2008). Systematic differences in treatment effect estimates between propensity score methods and logistic regression. International Journal of Epidemiology 37, 1142-1147.
-
(2008)
International Journal of Epidemiology
, vol.37
, pp. 1142-1147
-
-
Martens, E.1
Pestman, W.2
de Boer, A.3
Belitzer, S.4
Klungel, O.5
-
28
-
-
0033620844
-
Interpreting the evidence: choosing between randomised and non-randomised studies
-
McKee, M., Britton, A., Black, N., McPjerson, K., Sanderson, C. and Blain, C. (1999). Interpreting the evidence: choosing between randomised and non-randomised studies. British Medical Journal 319, 312-315.
-
(1999)
British Medical Journal
, vol.319
, pp. 312-315
-
-
Mckee, M.1
Britton, A.2
Black, N.3
Mcpjerson, K.4
Sanderson, C.5
Blain, C.6
-
29
-
-
0031814687
-
Econometrics in outcome research: the use of instrumental variables
-
Newhouse, J. P. and McClellan, M. (1998). Econometrics in outcome research: the use of instrumental variables. Annual Review of Public Health 19, 17-34.
-
(1998)
Annual Review of Public Health
, vol.19
, pp. 17-34
-
-
Newhouse, J.P.1
Mcclellan, M.2
-
30
-
-
70350574644
-
Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships
-
Rassen, J. A., Brookhart, M. A., Glynn, R. J., Mittleman, M. A. and Schneeweiss, S. (2009). Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships. Journal of Clinical Epidemiology 62, 1226-1232.
-
(2009)
Journal of Clinical Epidemiology
, vol.62
, pp. 1226-1232
-
-
Rassen, J.A.1
Brookhart, M.A.2
Glynn, R.J.3
Mittleman, M.A.4
Schneeweiss, S.5
-
31
-
-
0033847784
-
Marginal structural models and causal inference in epidemiology
-
Robins, J. M., Hernan, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550-560.
-
(2000)
Epidemiology
, vol.11
, pp. 550-560
-
-
Robins, J.M.1
Hernan, M.A.2
Brumback, B.3
-
32
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
33
-
-
84949193513
-
Reducing bias in observational studies using subclassification on the propensity score
-
Rosenbaum, P. R. and Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 79, 516-524.
-
(1984)
Journal of the American Statistical Association
, vol.79
, pp. 516-524
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
34
-
-
33846253571
-
The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials
-
Rubin, D. (2007). The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Statistics in Medicine 26, 20-36.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 20-36
-
-
Rubin, D.1
-
35
-
-
42649089469
-
Evidence from nonrandomized studies: a case study on the estimation of causal effects
-
Schmoor, C., Caputo, A. and Schumacher, M. (2008). Evidence from nonrandomized studies: a case study on the estimation of causal effects. American Journal of Epidemiology 167, 1120-1129.
-
(2008)
American Journal of Epidemiology
, vol.167
, pp. 1120-1129
-
-
Schmoor, C.1
Caputo, A.2
Schumacher, M.3
-
36
-
-
0030045447
-
Randomized and non-randomized patients in clinical trials: experiences with comprehensive cohort studies
-
Schmoor, C., Olschewski, M. and Schumacher, M. (1996). Randomized and non-randomized patients in clinical trials: experiences with comprehensive cohort studies. Statistics in Medicine 15, 263-271.
-
(1996)
Statistics in Medicine
, vol.15
, pp. 263-271
-
-
Schmoor, C.1
Olschewski, M.2
Schumacher, M.3
-
37
-
-
0031022551
-
Effects of covariate omission and categorization when analysing randomized trials with the Cox model
-
Schmoor, C. and Schumacher, M. (1997). Effects of covariate omission and categorization when analysing randomized trials with the Cox model. Statistics in Medicine 16, 225-237.
-
(1997)
Statistics in Medicine
, vol.16
, pp. 225-237
-
-
Schmoor, C.1
Schumacher, M.2
-
38
-
-
0023433230
-
The impact of heterogeneity on the comparison of survival times
-
Schumacher, M., Olschewski, M. and Schmoor, C. (1987). The impact of heterogeneity on the comparison of survival times. Statistics in Medicine 6, 773-784.
-
(1987)
Statistics in Medicine
, vol.6
, pp. 773-784
-
-
Schumacher, M.1
Olschewski, M.2
Schmoor, C.3
-
39
-
-
38849111846
-
Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure
-
Correction 27, 4615.
-
Senn, S., Graf, E. and Caputo, A. (2007). Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure. Statistics in Medicine 26, 5529-5544. Correction 27, 4615.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 5529-5544
-
-
Senn, S.1
Graf, E.2
Caputo, A.3
-
40
-
-
18844452973
-
Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review
-
Shah, B., Laupacis, A., Hux, J. and Austin, P. (2005). Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. Journal of Clinical Epidemiology 58, 550-559.
-
(2005)
Journal of Clinical Epidemiology
, vol.58
, pp. 550-559
-
-
Shah, B.1
Laupacis, A.2
Hux, J.3
Austin, P.4
-
41
-
-
17844371350
-
Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes
-
Smith, C. T., Williamson, P. R. and Marson, A. G. (2005). Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes. Statistics in Medicine 24, 1307-1319.
-
(2005)
Statistics in Medicine
, vol.24
, pp. 1307-1319
-
-
Smith, C.T.1
Williamson, P.R.2
Marson, A.G.3
-
42
-
-
77949408623
-
Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification
-
Stampf, S., Graf, E., Schmoor, C. and Schumacher, M. (2010). Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification. Statistics in Medicine 29, 760-769.
-
(2010)
Statistics in Medicine
, vol.29
, pp. 760-769
-
-
Stampf, S.1
Graf, E.2
Schmoor, C.3
Schumacher, M.4
-
43
-
-
33846436128
-
Analysis of observational studies in the presence of treatment selction bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods
-
Stukel, T. A., Fisher, E. S., Wennberg, D. E., Alter, D. A., Gottlieb, D. J. and Vermeulen, M. J. (2007). Analysis of observational studies in the presence of treatment selction bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods. Journal of the American Medical Association 297, 278-285.
-
(2007)
Journal of the American Medical Association
, vol.297
, pp. 278-285
-
-
Stukel, T.A.1
Fisher, E.S.2
Wennberg, D.E.3
Alter, D.A.4
Gottlieb, D.J.5
Vermeulen, M.J.6
-
44
-
-
33645226210
-
A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
-
Stürmer, T., Joshi, M., Glynn, R. J., Avorn, J., Rothmann, K. J. and Schneeweiss, S. (2006). A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. Journal of Clinical Epidemiology 59, 437-461.
-
(2006)
Journal of Clinical Epidemiology
, vol.59
, pp. 437-461
-
-
Stürmer, T.1
Joshi, M.2
Glynn, R.J.3
Avorn, J.4
Rothmann, K.J.5
Schneeweiss, S.6
-
45
-
-
77953939249
-
Using instrumental variables to adjust for treatment contamination in randomised controlled trials
-
Sussman, J. B. and Hayward, R. A. (2010). Using instrumental variables to adjust for treatment contamination in randomised controlled trials. British Medical Journal 340, 1181-1184.
-
(2010)
British Medical Journal
, vol.340
, pp. 1181-1184
-
-
Sussman, J.B.1
Hayward, R.A.2
-
46
-
-
0003969894
-
Principles of Econometrics
-
Wiley, New York.
-
Theil, H. (1971). Principles of Econometrics. Wiley, New York.
-
(1971)
-
-
Theil, H.1
-
47
-
-
0033619529
-
Explaining heterogeneity in meta-analysis: a comparison of methods
-
Thompson, S. G. and Sharp, S. J. (1999). Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine 18, 2693-2708.
-
(1999)
Statistics in Medicine
, vol.18
, pp. 2693-2708
-
-
Thompson, S.G.1
Sharp, S.J.2
|