메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1103-1108

Compressed nonnegative sparse coding

Author keywords

[No Author keywords available]

Indexed keywords

BASIS VECTOR; DATA VECTORS; LINEAR COMBINATIONS; MACHINE-LEARNING; NON-NEGATIVE SPARSE CODING; RANDOM PROJECTIONS; REAL WORLD DATA; SPARSE CODING;

EID: 79951741437     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2010.162     Document Type: Conference Paper
Times cited : (6)

References (26)
  • 1
    • 0038166193 scopus 로고    scopus 로고
    • Database-friendly random projections: Johnson-lindenstrauss with binary coins
    • D. Achlioptas. Database-friendly random projections: Johnson- lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671-687, 2003.
    • (2003) Journal of Computer and System Sciences , vol.66 , Issue.4 , pp. 671-687
    • Achlioptas, D.1
  • 3
    • 49149085985 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts
    • D. Donoho and V. Stodden. When does non-negative matrix factorization give a correct decomposition into parts. In NIPS 17, 2004.
    • (2004) NIPS 17
    • Donoho, D.1    Stodden, V.2
  • 6
    • 84857841726 scopus 로고    scopus 로고
    • Non-negative sparse coding
    • Proceedings of the 12th IEEE Workshop on
    • P. O. Hoyer. Non-negative sparse coding. In Neural Networks for Signal Processing, 2002. Proceedings of the 12th IEEE Workshop on, pages 557-565, 2002.
    • (2002) Neural Networks for Signal Processing, 2002 , pp. 557-565
    • Hoyer, P.O.1
  • 7
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparse-ness constraints
    • P. O. Hoyer. Non-negative matrix factorization with sparse-ness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 8
    • 0001654702 scopus 로고
    • Extensions of lipschitz mapping into hilbert space
    • William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mapping into Hilbert space. Contemporary Mathematics, 26:189-206, 1984.
    • (1984) Contemporary Mathematics , vol.26 , pp. 189-206
    • Johnson, W.B.1    Joram, L.2
  • 9
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401 (6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 10
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages 556-562, 2000.
    • (2000) NIPS , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 12
    • 67049137986 scopus 로고    scopus 로고
    • Computationally efficient estimators for dimension reductions using stable random projections
    • Pisa, Italy
    • Ping Li. Computationally efficient estimators for dimension reductions using stable random projections. In ICDM, Pisa, Italy, 2008.
    • (2008) ICDM
    • Li, P.1
  • 14
    • 35748971790 scopus 로고    scopus 로고
    • Nonlinear estimators and tail bounds for dimension reduction in using cauchy random projections
    • Ping Li, Trevor J. Hastie, and Kenneth W. Church. Nonlinear estimators and tail bounds for dimensional reduction in 11 using cauchy random projections. Journal of Machine Learning Research, 8:2497-2532, 2007. (Pubitemid 350046191)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 2497-2532
    • Ping, L.1    Hastie, T.J.2    Church, K.W.3
  • 15
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • C. J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19:2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , pp. 2756-2779
    • Lin, C.J.1
  • 16
    • 51949103923 scopus 로고    scopus 로고
    • Discriminative learned dictionaries for local image analysis
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local image analysis. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4    Zisserman, A.5
  • 19
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2):111-126, 1994.
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 20
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating non-negativity-constrained least squares and the active set method
    • H. Park and H. Kim. Nonnegative matrix factorization based on alternating non-negativity-constrained least squares and the active set method. SIAM Journal on Matrix Analysis and Applications, 30(2):713-730, 2008.
    • (2008) SIAM Journal on Matrix Analysis and Applications , vol.30 , Issue.2 , pp. 713-730
    • Park, H.1    Kim, H.2
  • 21
    • 58049205423 scopus 로고    scopus 로고
    • Image sequence denoising via sparse and redundant representations
    • M. Protter and M. Elad. Image sequence denoising via sparse and redundant representations. IEEE Transactions on Image Processing, 18(1):27-36, 2009.
    • (2009) IEEE Transactions on Image Processing , vol.18 , Issue.1 , pp. 27-36
    • Protter, M.1    Elad, M.2
  • 22
    • 34547971961 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In ICML 24, pages 759-766, 2007.
    • (2007) ICML 24 , pp. 759-766
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 23
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 58(1):267-288, 1996.
    • (1996) J. Royal. Statist. Soc B. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 24
    • 14844315829 scopus 로고    scopus 로고
    • American Mathematical Society, Providence, RI
    • Santosh Vempala. The Random Projection Method. American Mathematical Society, Providence, RI, 2004.
    • (2004) The Random Projection Method
    • Vempala, S.1
  • 26
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization. In SIGIR 26, pages 267-273, 2003.
    • (2003) SIGIR 26 , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.