-
1
-
-
0038166193
-
Database-friendly random projections: Johnson-lindenstrauss with binary coins
-
D. Achlioptas. Database-friendly random projections: Johnson- lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671-687, 2003.
-
(2003)
Journal of Computer and System Sciences
, vol.66
, Issue.4
, pp. 671-687
-
-
Achlioptas, D.1
-
3
-
-
49149085985
-
When does non-negative matrix factorization give a correct decomposition into parts
-
D. Donoho and V. Stodden. When does non-negative matrix factorization give a correct decomposition into parts. In NIPS 17, 2004.
-
(2004)
NIPS 17
-
-
Donoho, D.1
Stodden, V.2
-
4
-
-
3242708140
-
Least angle regression
-
DOI 10.1214/009053604000000067
-
B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32:407-499, 2004. (Pubitemid 41250302)
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
Ishwaran, H.5
Knight, K.6
Loubes, J.-M.7
Massart, P.8
Madigan, D.9
Ridgeway, G.10
Rosset, S.11
Zhu, J.I.12
Stine, R.A.13
Turlach, B.A.14
Weisberg, S.15
Hastie, T.16
Johnstone, I.17
Tibshirani, R.18
-
6
-
-
84857841726
-
Non-negative sparse coding
-
Proceedings of the 12th IEEE Workshop on
-
P. O. Hoyer. Non-negative sparse coding. In Neural Networks for Signal Processing, 2002. Proceedings of the 12th IEEE Workshop on, pages 557-565, 2002.
-
(2002)
Neural Networks for Signal Processing, 2002
, pp. 557-565
-
-
Hoyer, P.O.1
-
7
-
-
84900510076
-
Non-negative matrix factorization with sparse-ness constraints
-
P. O. Hoyer. Non-negative matrix factorization with sparse-ness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
8
-
-
0001654702
-
Extensions of lipschitz mapping into hilbert space
-
William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mapping into Hilbert space. Contemporary Mathematics, 26:189-206, 1984.
-
(1984)
Contemporary Mathematics
, vol.26
, pp. 189-206
-
-
Johnson, W.B.1
Joram, L.2
-
9
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401 (6755):788-791, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
10
-
-
0001093042
-
Algorithms for non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages 556-562, 2000.
-
(2000)
NIPS
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
12
-
-
67049137986
-
Computationally efficient estimators for dimension reductions using stable random projections
-
Pisa, Italy
-
Ping Li. Computationally efficient estimators for dimension reductions using stable random projections. In ICDM, Pisa, Italy, 2008.
-
(2008)
ICDM
-
-
Li, P.1
-
13
-
-
33746094275
-
Improving random projections using marginal information
-
Learning Theory - 19th Annual Conference on Learning Theory, COLT 2006, Proceedings
-
Ping Li, Trevor J. Hastie, and Kenneth W. Church. Improving random projections using marginal information. In COLT, pages 635-649, Pittsburgh, PA, 2006. (Pubitemid 44072224)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.LNAI
, pp. 635-649
-
-
Li, P.1
Hastie, T.J.2
Church, K.W.3
-
14
-
-
35748971790
-
Nonlinear estimators and tail bounds for dimension reduction in using cauchy random projections
-
Ping Li, Trevor J. Hastie, and Kenneth W. Church. Nonlinear estimators and tail bounds for dimensional reduction in 11 using cauchy random projections. Journal of Machine Learning Research, 8:2497-2532, 2007. (Pubitemid 350046191)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 2497-2532
-
-
Ping, L.1
Hastie, T.J.2
Church, K.W.3
-
15
-
-
35548969471
-
Projected gradient methods for non-negative matrix factorization
-
C. J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19:2756-2779, 2007.
-
(2007)
Neural Computation
, vol.19
, pp. 2756-2779
-
-
Lin, C.J.1
-
16
-
-
51949103923
-
Discriminative learned dictionaries for local image analysis
-
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local image analysis. In CVPR, pages 1-8, 2008.
-
(2008)
CVPR
, pp. 1-8
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
Zisserman, A.5
-
19
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2):111-126, 1994.
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
20
-
-
67349093319
-
Nonnegative matrix factorization based on alternating non-negativity-constrained least squares and the active set method
-
H. Park and H. Kim. Nonnegative matrix factorization based on alternating non-negativity-constrained least squares and the active set method. SIAM Journal on Matrix Analysis and Applications, 30(2):713-730, 2008.
-
(2008)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, Issue.2
, pp. 713-730
-
-
Park, H.1
Kim, H.2
-
21
-
-
58049205423
-
Image sequence denoising via sparse and redundant representations
-
M. Protter and M. Elad. Image sequence denoising via sparse and redundant representations. IEEE Transactions on Image Processing, 18(1):27-36, 2009.
-
(2009)
IEEE Transactions on Image Processing
, vol.18
, Issue.1
, pp. 27-36
-
-
Protter, M.1
Elad, M.2
-
22
-
-
34547971961
-
Self-taught learning: Transfer learning from unlabeled data
-
R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In ICML 24, pages 759-766, 2007.
-
(2007)
ICML 24
, pp. 759-766
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
23
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 58(1):267-288, 1996.
-
(1996)
J. Royal. Statist. Soc B.
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
24
-
-
14844315829
-
-
American Mathematical Society, Providence, RI
-
Santosh Vempala. The Random Projection Method. American Mathematical Society, Providence, RI, 2004.
-
(2004)
The Random Projection Method
-
-
Vempala, S.1
-
26
-
-
1542347778
-
Document clustering based on non-negative matrix factorization
-
W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization. In SIGIR 26, pages 267-273, 2003.
-
(2003)
SIGIR 26
, pp. 267-273
-
-
Xu, W.1
Liu, X.2
Gong, Y.3
|