-
1
-
-
77249164255
-
Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications
-
M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, "Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications", Nat. Mater. 9, 239-244 (2010).
-
(2010)
Nat. Mater.
, vol.9
, pp. 239-244
-
-
Kelzenberg, M.1
Boettcher, S.2
Petykiewicz, J.3
Turner-Evans, D.4
Putnam, M.5
Warren, E.6
Spurgeon, J.7
Briggs, R.8
Lewis, N.9
Atwater, H.10
-
2
-
-
77949437431
-
Light trapping in silicon nanowire solar cells
-
E. Garnett and P. Yang, "Light trapping in silicon nanowire solar cells", Nano Lett. 10, 1082-1087 (2010).
-
(2010)
Nano. Lett.
, vol.10
, pp. 1082-1087
-
-
Garnett, E.1
Yang, P.2
-
3
-
-
80054929719
-
Strong broadband absorption in silicon nanowire arrays with a large lattice constant for photovoltaic applications
-
L. Tsakalakos, J. Balch, J. Fronheiser, M. Shih, S. LaBoeuf, M. Pietrzykowski, P. Codella, B. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Ropol, "Strong broadband absorption in silicon nanowire arrays with a large lattice constant for photovoltaic applications", J. Nanophoton. 1, 013552(2007).
-
(2007)
J. Nanophoton
, vol.1
, pp. 013552
-
-
Tsakalakos, L.1
Balch, J.2
Fronheiser, J.3
Shih, M.4
LaBoeuf, S.5
Pietrzykowski, M.6
Codella, P.7
Korevaar, B.8
Sulima, O.9
Rand, J.10
Davuluru, A.11
Ropol, U.12
-
4
-
-
35348984409
-
Coaxial silicon nanowires as solar cells and nanoelectronic power sources
-
DOI 10.1038/nature06181, PII NATURE06181
-
B. Tian, X. Zheng, T. Kempa, Y. Fang, J. Huang, and C. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources", Nature 449, 885-889 (2007). (Pubitemid 47598610)
-
(2007)
Nature
, vol.449
, Issue.7164
, pp. 885-889
-
-
Tian, B.1
Zheng, X.2
Kempa, T.J.3
Fang, Y.4
Yu, N.5
Yu, G.6
Huang, J.7
Lieber, C.M.8
-
5
-
-
47749087123
-
Silicon nanowire radial p-n junction solar cells
-
DOI 10.1021/ja8032907
-
E. Garnett and P. Yang, "Silicon nanowire radial p-n junction solar cells", J. Am. Chem. Soc. 130, 9224-9225 (2008). (Pubitemid 352031121)
-
(2008)
Journal of the American Chemical Society
, vol.130
, Issue.29
, pp. 9224-9225
-
-
Garnett, E.C.1
Yang, P.2
-
6
-
-
20544449654
-
Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells
-
B. Kayes, H. Atwater, and N. Lewis, "Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells", J. Appl. Phys. 7, 114302-114311 (2005).
-
(2005)
J. Appl. Phys.
, vol.7
, pp. 114302-114311
-
-
Kayes, B.1
Atwater, H.2
Lewis, N.3
-
7
-
-
77956283603
-
Si microwire-array solar cells
-
M. Putnam, S. Boettcher, M. Kelzenberg, D. Turner-Evans, J. Spurgeon, E. Warren, R. Briggs, N. Lewis, and H. Atwater, "Si microwire-array solar cells", Energy Environ. Sci. 3, 1037-1041 (2010).
-
(2010)
Energy Environ. Sci.
, vol.3
, pp. 1037-1041
-
-
Putnam, M.1
Boettcher, S.2
Kelzenberg, M.3
Turner-Evans, D.4
Spurgeon, J.5
Warren, E.6
Briggs, R.7
Lewis, N.8
Atwater, H.9
-
8
-
-
36749054048
-
Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications
-
L. Hu and G. Chen, "Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications", Nano Lett. 7, 3249-3252 (2007).
-
(2007)
Nano. Lett.
, vol.7
, pp. 3249-3252
-
-
Hu, L.1
Chen, G.2
-
9
-
-
77958033766
-
Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth
-
C. Kenrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, "Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth", Appl. Phys. Lett. 97, 143108(2010).
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 143108
-
-
Kenrick, C.1
Yoon, H.2
Yuwen, Y.3
Barber, G.4
Shen, H.5
Mallouk, T.6
Dickey, E.7
Mayer, T.8
Redwing, J.9
-
10
-
-
79951640567
-
Silicon nanowires for photovoltaic solar energy conversion
-
K. Peng and S. Lee, "Silicon nanowires for photovoltaic solar energy conversion", Adv. Mater. 20, 1-18 (2010).
-
(2010)
Adv. Mater.
, vol.20
, pp. 1-18
-
-
Peng, K.1
Lee, S.2
-
11
-
-
79951602396
-
High performance wire-array silicon solar cells
-
O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, and S. Guha, "High performance wire-array silicon solar cells", Prog. Photovolt. Res. Appl. 10, 1002(2010).
-
(2010)
Prog. Photovolt. Res. Appl.
, vol.10
, pp. 1002
-
-
Gunawan, O.1
Wang, K.2
Fallahazad, B.3
Zhang, Y.4
Tutuc, E.5
Guha, S.6
-
12
-
-
61749103132
-
Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays
-
J. Zhu, Z. Yu, G. Burkhard, C. Hsu, S. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, "Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays", Nano Lett. 9, 279-282 (2009).
-
(2009)
Nano. Lett.
, vol.9
, pp. 279-282
-
-
Zhu, J.1
Yu, Z.2
Burkhard, G.3
Hsu, C.4
Connor, S.5
Xu, Y.6
Wang, Q.7
McGehee, M.8
Fan, S.9
Cui, Y.10
-
13
-
-
36749054048
-
Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications
-
C. Lin and M. Povinelli, "Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications", Nano Lett. 7, 3249-3252 (2007).
-
(2007)
Nano. Lett.
, vol.7
, pp. 3249-3252
-
-
Lin, C.1
Povinelli, M.2
-
14
-
-
0020154929
-
Statistical ray optics
-
E. Yablonovitch, "Statistical ray optics", J. Opt. Soc. Am. 72(7), 899-907 (1982).
-
(1982)
J. Opt. Soc. Am.
, vol.72
, Issue.7
, pp. 899-907
-
-
Yablonovitch, E.1
-
15
-
-
70350431281
-
10 μm minority-carrier diffusion lengths in si wire synthesized by cu-catalyzed vapor-liquid-solid growth
-
M. Putnam, D. Turner-Evans, M. Kelzenberg, S. Boettcher, N. Lewis, and H. Atwater, "10 μm minority-carrier diffusion lengths in si wire synthesized by cu-catalyzed vapor-liquid-solid growth", Appl. Phys. Lett. 95, 163116(2009).
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 163116
-
-
Putnam, M.1
Turner-Evans, D.2
Kelzenberg, M.3
Boettcher, S.4
Lewis, N.5
Atwater, H.6
-
17
-
-
84894396292
-
-
We find our model very slightly exceeds the ergodic limit across all aspect ratios for the smallest filling fraction. This is observed across aspect ratios, with no trend with increasing aspect ratios. The maximum amount by which the ergodic limit is exceeded is approximately 1% and is likely due to small inaccuracies in the model
-
We find our model very slightly exceeds the ergodic limit across all aspect ratios for the smallest filling fraction. This is observed across aspect ratios, with no trend with increasing aspect ratios. The maximum amount by which the ergodic limit is exceeded is approximately 1% and is likely due to small inaccuracies in the model.
-
-
-
-
18
-
-
84894392633
-
-
This should not be confused with the areal filling fraction of the wire array. In solar cells, the power can be calculated by multiplying the short circuit current, the open circuit voltage, and the fill factor, where the fill factor accounts for the fact that the current-voltage curve is not square in the power-producing region
-
This should not be confused with the areal filling fraction of the wire array. In solar cells, the power can be calculated by multiplying the short circuit current, the open circuit voltage, and the fill factor, where the fill factor accounts for the fact that the current-voltage curve is not square in the power-producing region.
-
-
-
-
19
-
-
58449135554
-
Flexible polymer-embedded si wire arrays
-
K. Plass, M. Filler, J. Spurgeon, B. Kayes, S. Maldonado, B. Brunschwig, H. Atwater, and N. Lewis, "Flexible polymer-embedded si wire arrays", Adv. Mater. 21, 325-328 (2009).
-
(2009)
Adv. Mater.
, vol.21
, pp. 325-328
-
-
Plass, K.1
Filler, M.2
Spurgeon, J.3
Kayes, B.4
Maldonado, S.5
Brunschwig, B.6
Atwater, H.7
Lewis, N.8
|