메뉴 건너뛰기




Volumn 19, Issue 4, 2011, Pages 3316-3331

Ray optical light trapping in silicon microwires: Exceeding the 2n 2 intensity limit

Author keywords

[No Author keywords available]

Indexed keywords

ABSORPTION; LIGHT; REFLECTION;

EID: 79951642741     PISSN: None     EISSN: 10944087     Source Type: Journal    
DOI: 10.1364/OE.19.003316     Document Type: Article
Times cited : (44)

References (20)
  • 2
    • 77949437431 scopus 로고    scopus 로고
    • Light trapping in silicon nanowire solar cells
    • E. Garnett and P. Yang, "Light trapping in silicon nanowire solar cells", Nano Lett. 10, 1082-1087 (2010).
    • (2010) Nano. Lett. , vol.10 , pp. 1082-1087
    • Garnett, E.1    Yang, P.2
  • 4
    • 35348984409 scopus 로고    scopus 로고
    • Coaxial silicon nanowires as solar cells and nanoelectronic power sources
    • DOI 10.1038/nature06181, PII NATURE06181
    • B. Tian, X. Zheng, T. Kempa, Y. Fang, J. Huang, and C. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources", Nature 449, 885-889 (2007). (Pubitemid 47598610)
    • (2007) Nature , vol.449 , Issue.7164 , pp. 885-889
    • Tian, B.1    Zheng, X.2    Kempa, T.J.3    Fang, Y.4    Yu, N.5    Yu, G.6    Huang, J.7    Lieber, C.M.8
  • 5
    • 47749087123 scopus 로고    scopus 로고
    • Silicon nanowire radial p-n junction solar cells
    • DOI 10.1021/ja8032907
    • E. Garnett and P. Yang, "Silicon nanowire radial p-n junction solar cells", J. Am. Chem. Soc. 130, 9224-9225 (2008). (Pubitemid 352031121)
    • (2008) Journal of the American Chemical Society , vol.130 , Issue.29 , pp. 9224-9225
    • Garnett, E.C.1    Yang, P.2
  • 6
    • 20544449654 scopus 로고    scopus 로고
    • Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells
    • B. Kayes, H. Atwater, and N. Lewis, "Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells", J. Appl. Phys. 7, 114302-114311 (2005).
    • (2005) J. Appl. Phys. , vol.7 , pp. 114302-114311
    • Kayes, B.1    Atwater, H.2    Lewis, N.3
  • 8
    • 36749054048 scopus 로고    scopus 로고
    • Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications
    • L. Hu and G. Chen, "Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications", Nano Lett. 7, 3249-3252 (2007).
    • (2007) Nano. Lett. , vol.7 , pp. 3249-3252
    • Hu, L.1    Chen, G.2
  • 10
    • 79951640567 scopus 로고    scopus 로고
    • Silicon nanowires for photovoltaic solar energy conversion
    • K. Peng and S. Lee, "Silicon nanowires for photovoltaic solar energy conversion", Adv. Mater. 20, 1-18 (2010).
    • (2010) Adv. Mater. , vol.20 , pp. 1-18
    • Peng, K.1    Lee, S.2
  • 13
    • 36749054048 scopus 로고    scopus 로고
    • Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications
    • C. Lin and M. Povinelli, "Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications", Nano Lett. 7, 3249-3252 (2007).
    • (2007) Nano. Lett. , vol.7 , pp. 3249-3252
    • Lin, C.1    Povinelli, M.2
  • 14
    • 0020154929 scopus 로고
    • Statistical ray optics
    • E. Yablonovitch, "Statistical ray optics", J. Opt. Soc. Am. 72(7), 899-907 (1982).
    • (1982) J. Opt. Soc. Am. , vol.72 , Issue.7 , pp. 899-907
    • Yablonovitch, E.1
  • 15
    • 70350431281 scopus 로고    scopus 로고
    • 10 μm minority-carrier diffusion lengths in si wire synthesized by cu-catalyzed vapor-liquid-solid growth
    • M. Putnam, D. Turner-Evans, M. Kelzenberg, S. Boettcher, N. Lewis, and H. Atwater, "10 μm minority-carrier diffusion lengths in si wire synthesized by cu-catalyzed vapor-liquid-solid growth", Appl. Phys. Lett. 95, 163116(2009).
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 163116
    • Putnam, M.1    Turner-Evans, D.2    Kelzenberg, M.3    Boettcher, S.4    Lewis, N.5    Atwater, H.6
  • 17
    • 84894396292 scopus 로고    scopus 로고
    • We find our model very slightly exceeds the ergodic limit across all aspect ratios for the smallest filling fraction. This is observed across aspect ratios, with no trend with increasing aspect ratios. The maximum amount by which the ergodic limit is exceeded is approximately 1% and is likely due to small inaccuracies in the model
    • We find our model very slightly exceeds the ergodic limit across all aspect ratios for the smallest filling fraction. This is observed across aspect ratios, with no trend with increasing aspect ratios. The maximum amount by which the ergodic limit is exceeded is approximately 1% and is likely due to small inaccuracies in the model.
  • 18
    • 84894392633 scopus 로고    scopus 로고
    • This should not be confused with the areal filling fraction of the wire array. In solar cells, the power can be calculated by multiplying the short circuit current, the open circuit voltage, and the fill factor, where the fill factor accounts for the fact that the current-voltage curve is not square in the power-producing region
    • This should not be confused with the areal filling fraction of the wire array. In solar cells, the power can be calculated by multiplying the short circuit current, the open circuit voltage, and the fill factor, where the fill factor accounts for the fact that the current-voltage curve is not square in the power-producing region.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.