-
2
-
-
0000463718
-
-
M. Imaizumi, T. Ito, M. Yamaguchi, and K. Kaneko, J. Appl. Phys. 81, 7635 (1997).
-
(1997)
J. Appl. Phys.
, vol.81
, pp. 7635
-
-
Imaizumi, M.1
Ito, T.2
Yamaguchi, M.3
Kaneko, K.4
-
3
-
-
0037431254
-
-
J. Goldberger, R. R. He, Y. F. Zhang, S. W. Lee, H. Q. Yan, H. J. Choi, and P. D. Yang, Nature (London) 422, 599 (2003).
-
(2003)
Nature (London)
, vol.422
, pp. 599
-
-
Goldberger, J.1
He, R.R.2
Zhang, Y.F.3
Lee, S.W.4
Yan, H.Q.5
Choi, H.J.6
Yang, P.D.7
-
4
-
-
0037038368
-
-
L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Nature (London) 420, 57 (2002).
-
(2002)
Nature (London)
, vol.420
, pp. 57
-
-
Lauhon, L.J.1
Gudiksen, M.S.2
Wang, D.3
Lieber, C.M.4
-
5
-
-
36449000249
-
-
K. Haraguchi, T. Katsuyama, K. Hiruma, and K. Ogawa, Appl. Phys. Lett. 60, 745 (1992).
-
(1992)
Appl. Phys. Lett.
, vol.60
, pp. 745
-
-
Haraguchi, K.1
Katsuyama, T.2
Hiruma, K.3
Ogawa, K.4
-
8
-
-
0037033988
-
-
M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature (London) 415, 617 (2002).
-
(2002)
Nature (London)
, vol.415
, pp. 617
-
-
Gudiksen, M.S.1
Lauhon, L.J.2
Wang, J.3
Smith, D.C.4
Lieber, C.M.5
-
10
-
-
0346076625
-
-
K. J. Weber, A. W. Blakers, M. J. Stocks, J. H. Babaei, V. A. Everett, A. J. Neuendorf, and P. J. Verlinden, IEEE Electron Device Lett. 25, 37 (2004).
-
(2004)
IEEE Electron Device Lett.
, vol.25
, pp. 37
-
-
Weber, K.J.1
Blakers, A.W.2
Stocks, M.J.3
Babaei, J.H.4
Everett, V.A.5
Neuendorf, A.J.6
Verlinden, P.J.7
-
17
-
-
84856125936
-
-
http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/Figs/135.gif
-
-
-
-
19
-
-
20544455510
-
-
note
-
In practice, this is not strictly true; it reflects the fact that the model only considers minority carrier transport. In particular, majority-carrier recombination is neglected. In reality, majority carriers will recombine also However, the length scale associated with majority-carrier recombination will be much longer than for minority carriers, and thus, to a good approximation, majority-carrier recombination may be neglected.
-
-
-
-
20
-
-
84856125937
-
-
http://rredc.nrel.gov/solar/
-
Air Mass 1.5 Global Spectrum, UNSW Key Center for Photovoltaic Engineering, http://www.pv.unsw.edu.au/am1.5.html. This website is now defunct - for the AM 1.5 spectrum please see http://rredc.nrel.gov/solar/
-
-
-
-
22
-
-
0004259460
-
-
2nd ed. (Prentice-Hall, Englewood Cliffs, NJ
-
R. F. Pierret, Advanced Semiconductor Fundamentals, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 2003), pp. 148, 149, and 154.
-
(2003)
Advanced Semiconductor Fundamentals
, pp. 148
-
-
Pierret, R.F.1
-
23
-
-
0004313527
-
-
2nd ed. (Addison-Wesley, Reading, MA
-
R. F. Pierret, Semiconductor Fundamentals, 2nd ed. (Addison-Wesley, Reading, MA, 1988), p. 99.
-
(1988)
Semiconductor Fundamentals
, pp. 99
-
-
Pierret, R.F.1
-
24
-
-
84856126342
-
-
http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/electric.html; http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaAs/electric.html
-
-
-
-
25
-
-
84856125934
-
-
http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/electric.html; http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaAs/electric.html
-
-
-
-
26
-
-
84856129289
-
-
Use was made of information from the website of the Ioffe Physico-Technical Institute, "Electronic archive: New Semiconductor Materials. Characteristics and Properties," http://www.ioffe.rssi.ru/SVA/ NSM/Semicond/Si/electric.html
-
-
-
-
27
-
-
20544452429
-
-
note
-
A semiconductor is termed "degenerate" if Ec - Ef <3 kT, or if Ef - Ev <3 kT. This occurs in silicon for dopings above ~1× 1018 cm-3. See R. F. Pierret, in Ref., pp. 115 and 127.
-
-
-
-
28
-
-
84856129290
-
-
The onset of Auger recombination can be estimated by the change in slope in a plot of lifetime vs dopant density. For silicon this occurs at dopant densities of ~5× 1018 cm-3. See http://www.ioffe.rssi.ru/SVA/NSM/Semicond/ Si/Figs/1323.gif
-
-
-
-
29
-
-
84856128391
-
-
Again, use was made of information from the website of the Ioffe Physico-Technical Institute, http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaAs/ electric.html
-
-
-
-
30
-
-
84856129291
-
-
GaAs becomes degenerate for dopings above ~1× 1017 cm-3. See Ref. 25 above.
-
GaAs becomes degenerate for dopings above ~1× 1017 cm-3. See Ref. above.
-
-
-
-
31
-
-
0035952891
-
-
Auger recombination begins to dominate in GaAs at doping levels above ~1× 1019 cm-3. See R. K. Ahrenkiel, R. Ellingson, W. Metzger, D. I. Lubyshev, and W. K. Liu, Appl. Phys. Lett. 78, 1879 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 1879
-
-
Ahrenkiel, R.K.1
Ellingson, R.2
Metzger, W.3
Lubyshev, D.I.4
Liu, W.K.5
-
32
-
-
20544437556
-
-
note
-
This is simply because there are not enough dopant ions to create the voltage drop required.
-
-
-
|