메뉴 건너뛰기




Volumn 10, Issue 3, 2007, Pages 203-214

Sparse least squares support vector training in the reduced empirical feature space

Author keywords

Cholesky factorization; Empirical feature space; Least squares support vector machines; Multi class support vector machines; Pattern classification; RBF kernels; Support vector machines

Indexed keywords


EID: 34547411882     PISSN: 14337541     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10044-007-0062-1     Document Type: Article
Times cited : (36)

References (20)
  • 2
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211-244
    • (2001) J Mach Learn Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 3
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modelling using orthogonal forward regression with PRESS statistic and regularization
    • 2
    • Chen S, Hong X, Harris CJ, Sharkey PM (2004) Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans Syst Man Cybern Part B 34(2):898-911
    • (2004) IEEE Trans Syst Man Cybern Part B , vol.34 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 4
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • 3
    • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293-300
    • (1999) Neural Process Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 7
    • 0036825788 scopus 로고    scopus 로고
    • Improved sparse least-squares support vector machines
    • Cawley GC, Talbot NLC (2002) Improved sparse least-squares support vector machines. Neurocomputing 48:1025-1031
    • (2002) Neurocomputing , vol.48 , pp. 1025-1031
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 10
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • 2
    • Xiong H, Swamy MNS, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2):460-474
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 460-474
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3
  • 11
    • 5744247732 scopus 로고    scopus 로고
    • KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions
    • 3
    • Kaieda K, Abe S (2004) KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions. Int J Approx Reason 37(3):145-253
    • (2004) Int J Approx Reason , vol.37 , pp. 145-253
    • Kaieda, K.1    Abe, S.2
  • 15
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179-188
    • (1936) Ann Eugen , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 17
    • 0025888567 scopus 로고
    • Input layer optimization of neural networks by sensitivity analysis and its application to recognition of numerals
    • 4
    • Takenaga H, Abe S, Takatoo M, Kayama M, Kitamura T, Okuyama Y (1991) Input layer optimization of neural networks by sensitivity analysis and its application to recognition of numerals. Electr Eng Jpn 111(4):130-138
    • (1991) Electr Eng Jpn , vol.111 , pp. 130-138
    • Takenaga, H.1    Abe, S.2    Takatoo, M.3    Kayama, M.4    Kitamura, T.5    Okuyama, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.