-
1
-
-
0001601215
-
Effects of 2-deoxyglucose on carbohydrate metablism: Review of the literature and studies in the rat
-
Brown J. Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metabolism 1962;11:1098-1112
-
(1962)
Metabolism
, vol.11
, pp. 1098-1112
-
-
Brown, J.1
-
2
-
-
0035795199
-
Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation
-
Ritter S, Bugarith K, Dinh TT. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J Comp Neurol 2001;432:197-216
-
(2001)
J Comp Neurol
, vol.432
, pp. 197-216
-
-
Ritter, S.1
Bugarith, K.2
Dinh, T.T.3
-
3
-
-
0037388788
-
Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion
-
Ritter S, Watts AG, Dinh TT, Sanchez-Watts G, Pedrow C. Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion. Endocrinology 2003;144:1357-1367
-
(2003)
Endocrinology
, vol.144
, pp. 1357-1367
-
-
Ritter, S.1
Watts, A.G.2
Dinh, T.T.3
Sanchez-Watts, G.4
Pedrow, C.5
-
4
-
-
0141450600
-
Immunotoxic destruction of distinct catecholaminergic neuron populations disrupts the reproductive response to glucoprivation in female rats
-
DOI 10.1210/en.2003-0258
-
I'Anson H, Sundling LA, Roland SM, Ritter S. Immunotoxic destruction of distinct catecholaminergic neuron populations disrupts the reproductive response to glucoprivation in female rats. Endocrinology 2003;144:4325-4331 (Pubitemid 37204831)
-
(2003)
Endocrinology
, vol.144
, Issue.10
, pp. 4325-4331
-
-
I'Anson, H.1
Sundling, L.A.2
Roland, S.M.3
Ritter, S.4
-
5
-
-
0035996846
-
Immunotoxic catecholamine lesions attenuate 2DG-induced increase of AGRP mRNA
-
Fraley GS, Dinh TT, Ritter S. Immunotoxic catecholamine lesions attenuate 2DG-induced increase of AGRP mRNA. Peptides 2002;23:1093-1099
-
(2002)
Peptides
, vol.23
, pp. 1093-1099
-
-
Fraley, G.S.1
Dinh, T.T.2
Ritter, S.3
-
6
-
-
33748461063
-
Attenuation of homeostatic responses to hypotension and glucoprivation after destruction of catecholaminergic rostral ventrolateral medulla neurons
-
Madden CJ, Stocker SD, Sved AF. Attenuation of homeostatic responses to hypotension and glucoprivation after destruction of catecholaminergic rostral ventrolateral medulla neurons. Am J Physiol Regul Integr Comp Physiol 2006;291:R751-R759
-
(2006)
Am J Physiol Regul Integr Comp Physiol
, vol.291
-
-
Madden, C.J.1
Stocker, S.D.2
Sved, A.F.3
-
7
-
-
0021097644
-
Insulin elicits ingestion in decerebrate rats
-
Flynn FW, Grill HJ. Insulin elicits ingestion in decerebrate rats. Science 1983;221:188-190
-
(1983)
Science
, vol.221
, pp. 188-190
-
-
Flynn, F.W.1
Grill, H.J.2
-
8
-
-
68049110612
-
2-Deoxy-D-glucose, but not mercaptoacetate, increases food intake in decerebrate rats
-
Darling RA, Ritter S. 2-Deoxy-D-glucose, but not mercaptoacetate, increases food intake in decerebrate rats. Am J Physiol Regul Integr Comp Physiol 2009;297:R382-R386
-
(2009)
Am J Physiol Regul Integr Comp Physiol
, vol.297
-
-
Darling, R.A.1
Ritter, S.2
-
9
-
-
0019794835
-
Glucoreceptors controlling feeding and blood glucose: Location in the hindbrain
-
Ritter RC, Slusser PG, Stone S. Glucoreceptors controlling feeding and blood glucose: location in the hindbrain. Science 1981;213:451-452
-
(1981)
Science
, vol.213
, pp. 451-452
-
-
Ritter, R.C.1
Slusser, P.G.2
Stone, S.3
-
10
-
-
0033976228
-
Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose
-
Ritter S, Dinh TT, Zhang Y. Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose. Brain Res 2000;856:37-47
-
(2000)
Brain Res
, vol.856
, pp. 37-47
-
-
Ritter, S.1
Dinh, T.T.2
Zhang, Y.3
-
11
-
-
34248226806
-
Localized glucoprivation of hindbrain sites elicits corticosterone and glucagon secretion
-
Andrew SF, Dinh TT, Ritter S. Localized glucoprivation of hindbrain sites elicits corticosterone and glucagon secretion. Am J Physiol Regul Integr Comp Physiol 2007;292:R1792-R1798
-
(2007)
Am J Physiol Regul Integr Comp Physiol
, vol.292
-
-
Andrew, S.F.1
Dinh, T.T.2
Ritter, S.3
-
12
-
-
2342531035
-
Glucoprivation increases expression of neuropeptide Y mRNA in hindbrain neurons that innervate the hypothalamus
-
Li AJ, Ritter S. Glucoprivation increases expression of neuropeptide Y mRNA in hindbrain neurons that innervate the hypothalamus. Eur J Neurosci 2004;19:2147-2154
-
(2004)
Eur J Neurosci
, vol.19
, pp. 2147-2154
-
-
Li, A.J.1
Ritter, S.2
-
13
-
-
33745118719
-
Differential responsiveness of dopamine-beta-hydroxylase gene expression to glucoprivation in different catecholamine cell groups
-
Li AJ, Wang Q, Ritter S. Differential responsiveness of dopamine-beta-hydroxylase gene expression to glucoprivation in different catecholamine cell groups. Endocrinology 2006;147:3428-3434
-
(2006)
Endocrinology
, vol.147
, pp. 3428-3434
-
-
Li, A.J.1
Wang, Q.2
Ritter, S.3
-
14
-
-
0032517174
-
Subgroups of hindbrain catecholamine neurons are selectively activated by 2-deoxy-D-glucose induced metabolic challenge
-
DOI 10.1016/S0006-8993(98)00655-6, PII S0006899398006556
-
Ritter S, Llewellyn-Smith I, Dinh TT. Subgroups of hindbrain catecholamine neurons are selectively activated by 2-deoxy-D-glucose induced metabolic challenge. Brain Res 1998;805:41-54 (Pubitemid 29005121)
-
(1998)
Brain Research
, vol.805
, Issue.1-2
, pp. 41-54
-
-
Ritter, S.1
Llewellyn-Smith, I.2
Dinh, T.T.3
-
15
-
-
84950170753
-
Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus
-
Sawchenko PE, Swanson LW, Grzanna R, Howe PR, Bloom SR, Polak JM. Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol 1985;241:138-153
-
(1985)
J Comp Neurol
, vol.241
, pp. 138-153
-
-
Sawchenko, P.E.1
Swanson, L.W.2
Grzanna, R.3
Howe, P.R.4
Bloom, S.R.5
Polak, J.M.6
-
16
-
-
58149379139
-
Simultaneous silencing of Npy and Dbh expression in hindbrain A1/C1 catecholamine cells suppresses glucoprivic feeding
-
Li AJ, Wang Q, Dinh TT, Ritter S. Simultaneous silencing of Npy and Dbh expression in hindbrain A1/C1 catecholamine cells suppresses glucoprivic feeding. J Neurosci 2009;29:280-287
-
(2009)
J Neurosci
, vol.29
, pp. 280-287
-
-
Li, A.J.1
Wang, Q.2
Dinh, T.T.3
Ritter, S.4
-
17
-
-
0031717105
-
The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?
-
Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998;67:821-855
-
(1998)
Annu Rev Biochem
, vol.67
, pp. 821-855
-
-
Hardie, D.G.1
Carling, D.2
Carlson, M.3
-
18
-
-
23744515608
-
Role of hypothalamic 5′-AMP-activated protein kinase in the regulation of food intake and energy homeostasis
-
Kim MS, Lee KU. Role of hypothalamic 5′-AMP-activated protein kinase in the regulation of food intake and energy homeostasis. J Mol Med 2005;83: 514-520
-
(2005)
J Mol Med
, vol.83
, pp. 514-520
-
-
Kim, M.S.1
Lee, K.U.2
-
19
-
-
33745199458
-
Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain
-
Ramamurthy S, Ronnett GV. Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J Physiol 2006;574:85-93
-
(2006)
J Physiol
, vol.574
, pp. 85-93
-
-
Ramamurthy, S.1
Ronnett, G.V.2
-
20
-
-
33745204479
-
AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues
-
Xue B, Kahn BB. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 2006;574:73-83
-
(2006)
J Physiol
, vol.574
, pp. 73-83
-
-
Xue, B.1
Kahn, B.B.2
-
21
-
-
0033054706
-
Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system
-
Turnley AM, Stapleton D, Mann RJ, Witters LA, Kemp BE, Bartlett PF. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem 1999;72:1707-1716
-
(1999)
J Neurochem
, vol.72
, pp. 1707-1716
-
-
Turnley, A.M.1
Stapleton, D.2
Mann, R.J.3
Witters, L.A.4
Kemp, B.E.5
Bartlett, P.F.6
-
22
-
-
0034803430
-
AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation
-
Culmsee C, Monnig J, Kemp BE, Mattson MP. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci 2001;17:45-58
-
(2001)
J Mol Neurosci
, vol.17
, pp. 45-58
-
-
Culmsee, C.1
Monnig, J.2
Kemp, B.E.3
Mattson, M.P.4
-
23
-
-
1842484296
-
AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus
-
Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004;428:569-574
-
(2004)
Nature
, vol.428
, pp. 569-574
-
-
Minokoshi, Y.1
Alquier, T.2
Furukawa, N.3
-
24
-
-
1842582870
-
AMP-activated protein kinase plays a role in the control of food intake
-
Andersson U, Filipsson K, Abbott CR, et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 2004;279:12005-12008
-
(2004)
J Biol Chem
, vol.279
, pp. 12005-12008
-
-
Andersson, U.1
Filipsson, K.2
Abbott, C.R.3
-
25
-
-
3142677140
-
Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase
-
Kim MS, Park JY, Namkoong C, et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 2004;10:727-733
-
(2004)
Nat Med
, vol.10
, pp. 727-733
-
-
Kim, M.S.1
Park, J.Y.2
Namkoong, C.3
-
26
-
-
26244461692
-
Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats
-
DOI 10.1007/s00125-005-1913-1
-
Han SM, Namkoong C, Jang PG, et al. Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 2005;48:2170-2178 (Pubitemid 41416931)
-
(2005)
Diabetologia
, vol.48
, Issue.10
, pp. 2170-2178
-
-
Han, S.-M.1
Namkoong, C.2
Jang, P.G.3
Park, I.S.4
Hong, S.W.5
Katakami, H.6
Chun, S.7
Kim, S.W.8
Park, J.-Y.9
Lee, K.-U.10
Kim, M.-S.11
-
27
-
-
33847022735
-
Role of hypothalamic adenosine 5′-monophosphate-activated protein kinase in the impaired counter-regulatory response induced by repetitive neuroglucopenia
-
Alquier T, Kawashima J, Tsuji Y, Kahn BB. Role of hypothalamic adenosine 5′-monophosphate-activated protein kinase in the impaired counter-regulatory response induced by repetitive neuroglucopenia. Endocrinology 2007;148:1367-1375
-
(2007)
Endocrinology
, vol.148
, pp. 1367-1375
-
-
Alquier, T.1
Kawashima, J.2
Tsuji, Y.3
Kahn, B.B.4
-
28
-
-
11144242445
-
Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior
-
Lee K, Li B, Xi X, Suh Y, Martin RJ. Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology 2005;146:3-10
-
(2005)
Endocrinology
, vol.146
, pp. 3-10
-
-
Lee, K.1
Li, B.2
Xi, X.3
Suh, Y.4
Martin, R.J.5
-
30
-
-
0037464403
-
Differential phosphorylation at serine sites in glutamate receptor-1 within neonatal rat hippocampus
-
Li AJ, Suzuki M, Suzuki S, Ikemoto M, Imamura T. Differential phosphorylation at serine sites in glutamate receptor-1 within neonatal rat hippocampus. Neurosci Lett 2003;341:41-44
-
(2003)
Neurosci Lett
, vol.341
, pp. 41-44
-
-
Li, A.J.1
Suzuki, M.2
Suzuki, S.3
Ikemoto, M.4
Imamura, T.5
-
31
-
-
20144386008
-
Functional expression of neuropeptide Y receptors in human neuroblastoma cells
-
Li AJ, Ritter S. Functional expression of neuropeptide Y receptors in human neuroblastoma cells. Regul Pept 2005;129:119-124
-
(2005)
Regul Pept
, vol.129
, pp. 119-124
-
-
Li, A.J.1
Ritter, S.2
-
32
-
-
0021346931
-
Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat
-
DOI 10.1016/0306-4522(84)90036-8
-
Everitt BJ, Hökfelt T, Terenius L, Tatemoto K, Mutt V, Goldstein M. Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 1984;11:443-462 (Pubitemid 14155718)
-
(1984)
Neuroscience
, vol.11
, Issue.2
, pp. 443-462
-
-
Everitt, B.J.1
Hokfelt, T.2
Terenius, L.3
-
33
-
-
0019844678
-
Disparate effects of infused nutrients on delayed glucoprivic feeding and hypothalamic norepinephrine turnover
-
Bellin SI, Ritter S. Disparate effects of infused nutrients on delayed glucoprivic feeding and hypothalamic norepinephrine turnover. J Neurosci 1981;1:1347-1353 (Pubitemid 12137087)
-
(1981)
Journal of Neuroscience
, vol.1
, Issue.12
, pp. 1347-1353
-
-
Bellin, S.I.1
Ritter, S.2
-
34
-
-
0019486027
-
Insulin-induced elevation of hypothalamic norepinephrine turnover persists after glucorestoration unless feeding occurs
-
Bellin SI, Ritter S. Insulin-induced elevation of hypothalamic norepinephrine turnover persists after glucorestoration unless feeding occurs. Brain Res 1981;217:327-337
-
(1981)
Brain Res
, vol.217
, pp. 327-337
-
-
Bellin, S.I.1
Ritter, S.2
-
35
-
-
0020727766
-
Feeding after recovery from 2-deoxyglucose injection: Cerebral and peripheral factors
-
Granneman J, Friedman MI. Feeding after recovery from 2-deoxyglucose injection: cerebral and peripheral factors. Am J Physiol 1983;244:R383-R388
-
(1983)
Am J Physiol
, vol.244
-
-
Granneman, J.1
Friedman, M.I.2
-
36
-
-
0017976370
-
Glucoprivic feeding behavior in absence of other signs of glucoprivation
-
Ritter RC, Roelke M, Neville M. Glucoprivic feeding behavior in absence of other signs of glucoprivation. Am J Physiol 1978;234:E617-E621
-
(1978)
Am J Physiol
, vol.234
-
-
Ritter, R.C.1
Roelke, M.2
Neville, M.3
-
37
-
-
2442631468
-
C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase
-
Kim EK, Miller I, Aja S, et al. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem 2004;279:19970-19976
-
(2004)
J Biol Chem
, vol.279
, pp. 19970-19976
-
-
Kim, E.K.1
Miller, I.2
Aja, S.3
-
38
-
-
3242801252
-
Hindbrain catecholamine neurons mediate consummatory responses to glucoprivation
-
Hudson B, Ritter S. Hindbrain catecholamine neurons mediate consummatory responses to glucoprivation. Physiol Behav 2004;82:241-250
-
(2004)
Physiol Behav
, vol.82
, pp. 241-250
-
-
Hudson, B.1
Ritter, S.2
-
39
-
-
66149185377
-
Dorsal hindbrain 5′-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance
-
Hayes MR, Skibicka KP, Bence KK, Grill HJ. Dorsal hindbrain 5′-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance. Endocrinology 2009;150:2175-2182
-
(2009)
Endocrinology
, vol.150
, pp. 2175-2182
-
-
Hayes, M.R.1
Skibicka, K.P.2
Bence, K.K.3
Grill, H.J.4
-
40
-
-
2542497121
-
Gastrointestinal mechanisms of satiation for food
-
Ritter RC. Gastrointestinal mechanisms of satiation for food. Physiol Behav 2004;81:249-273
-
(2004)
Physiol Behav
, vol.81
, pp. 249-273
-
-
Ritter, R.C.1
|