-
1
-
-
1542334001
-
Phosphorylation of Serine 2 within the RNA Polymerase II C-Terminal Domain Couples Transcription and 3′ End Processing
-
DOI 10.1016/S1097-2765(03)00492-1
-
Ahn, S. H., M. Kim, and S. Buratowski. 2004. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13:67-76. (Pubitemid 38117116)
-
(2004)
Molecular Cell
, vol.13
, Issue.1
, pp. 67-76
-
-
Ahn, S.H.1
Kim, M.2
Buratowski, S.3
-
2
-
-
0033567131
-
The yeast exosome and human PM-Scl are related complexes of 3' → 5' exonucleases
-
Allmang, C., et al. 1999. The yeast exosome and human PM-Scl are related complexes of 3′-→ 5′ exonucleases. Genes Dev. 13:2148-2158. (Pubitemid 29407354)
-
(1999)
Genes and Development
, vol.13
, Issue.16
, pp. 2148-2158
-
-
Allmang, C.1
Petfalski, E.2
Podtelejnikov, A.3
Mann, M.4
Tollervey, D.5
Mitchell, P.6
-
3
-
-
0028863631
-
Poly(A) site selection in the HIV-1 provirus: Inhibition of promoter-proximal polyadenylation by the downstream major splice donor site
-
Ashe, M. P., P. Griffin, W. James, and N. J. Proudfoot. 1995. Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev. 9:3008-3025.
-
(1995)
Genes Dev.
, vol.9
, pp. 3008-3025
-
-
Ashe, M.P.1
Griffin, P.2
James, W.3
Proudfoot, N.J.4
-
4
-
-
0030821340
-
The HIV-1 5′ LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site
-
Ashe, M. P., L. H. Pearson, and N. J. Proudfoot. 1997. The HIV-1 5′ LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site. EMBO J. 16:5752-5763.
-
(1997)
EMBO J.
, vol.16
, pp. 5752-5763
-
-
Ashe, M.P.1
Pearson, L.H.2
Proudfoot, N.J.3
-
5
-
-
0032956684
-
Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3′ end processing of the corresponding pre-mRNA
-
Brogna, S. 1999. Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3′ end processing of the corresponding pre-mRNA. RNA 5:562-573.
-
(1999)
RNA
, vol.5
, pp. 562-573
-
-
Brogna, S.1
-
6
-
-
0030933005
-
The Adh-related gene of Drosophila melanogaster is expressed as a functional dicistronic messenger RNA: Multigenic transcription in higher organisms
-
Brogna, S., and M. Ashburner. 1997. The Adh-related gene of Drosophila melanogaster is expressed as a functional dicistronic messenger RNA: multigenic transcription in higher organisms. EMBO J. 16:2023-2031.
-
(1997)
EMBO J.
, vol.16
, pp. 2023-2031
-
-
Brogna, S.1
Ashburner, M.2
-
7
-
-
70449641057
-
Progression through the RNA polymerase II CTD cycle
-
Buratowski, S. 2009. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36:541-546.
-
(2009)
Mol. Cell
, vol.36
, pp. 541-546
-
-
Buratowski, S.1
-
8
-
-
0034636715
-
dsRNA-mediated gene silencing in cultured Drosophila cells: A tissue culture model for the analysis of RNA interference
-
Caplen, N. J., J. Fleenor, A. Fire, and R. A. Morgan. 2000. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252:95-105.
-
(2000)
Gene
, vol.252
, pp. 95-105
-
-
Caplen, N.J.1
Fleenor, J.2
Fire, A.3
Morgan, R.A.4
-
9
-
-
0034767411
-
Dribble, the Drosophila KRR1p homologue, is involved in rRNA processing
-
Chan, H. Y., S. Brogna, and C. J. O'Kane. 2001. Dribble, the Drosophila KRR1p homologue, is involved in rRNA processing. Mol. Biol. Cell 12: 1409-1419.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 1409-1419
-
-
Chan, H.Y.1
Brogna, S.2
O'Kane, C.J.3
-
10
-
-
33749997848
-
Prediction of mRNA polyadenylation sites by support vector machine
-
DOI 10.1093/bioinformatics/btl394
-
Cheng, Y., R. M. Miura, and B. Tian. 2006. Prediction of mRNA polyadenylation sites by support vector machine. Bioinformatics 22:2320-2325. (Pubitemid 44566959)
-
(2006)
Bioinformatics
, vol.22
, Issue.19
, pp. 2320-2325
-
-
Cheng, Y.1
Miura, R.M.2
Tian, B.3
-
11
-
-
0035893314
-
Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain
-
Cho, E. J., M. S. Kobor, M. Kim, J. Greenblatt, and S. Buratowski. 2001. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15:3319-3329.
-
(2001)
Genes Dev.
, vol.15
, pp. 3319-3329
-
-
Cho, E.J.1
Kobor, M.S.2
Kim, M.3
Greenblatt, J.4
Buratowski, S.5
-
12
-
-
0034612276
-
Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways
-
Clemens, J. C., et al. 2000. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. U. S. A. 97:6499-6503.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 6499-6503
-
-
Clemens, J.C.1
-
13
-
-
0030784958
-
Mechanism and regulation of mRNA polyadenylation
-
Colgan, D. F., and J. L. Manley. 1997. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11:2755-2766.
-
(1997)
Genes Dev.
, vol.11
, pp. 2755-2766
-
-
Colgan, D.F.1
Manley, J.L.2
-
14
-
-
0034331199
-
Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors
-
de Vries, H., et al. 2000. Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 19:5895-5904.
-
(2000)
EMBO J.
, vol.19
, pp. 5895-5904
-
-
De Vries, H.1
-
15
-
-
75549087150
-
GenomeRNAi: A database for cell-based RNAi phenotypes. 2009 update
-
Gilsdorf, M., et al. 2010. GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Res. 38:D448-D452.
-
(2010)
Nucleic Acids Res.
, vol.38
-
-
Gilsdorf, M.1
-
16
-
-
49449105283
-
Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice
-
Gudipati, R. K., T. Villa, J. Boulay, and D. Libri. 2008. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat. Struct. Mol. Biol. 15:786-794.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 786-794
-
-
Gudipati, R.K.1
Villa, T.2
Boulay, J.3
Libri, D.4
-
17
-
-
0032480229
-
RNA polymerase II is an essential mRNA polyadenylation factor
-
Hirose, Y., and J. L. Manley. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93-96.
-
(1998)
Nature
, vol.395
, pp. 93-96
-
-
Hirose, Y.1
Manley, J.L.2
-
18
-
-
0026067071
-
A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors
-
Holton, T. A., and M. W. Graham. 1991. A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res. 19:1156.
-
(1991)
Nucleic Acids Res.
, vol.19
, pp. 1156
-
-
Holton, T.A.1
Graham, M.W.2
-
19
-
-
60149090021
-
The many pathways of RNA degradation
-
Houseley, J., and D. Tollervey. 2009. The many pathways of RNA degradation. Cell 136:763-776.
-
(2009)
Cell
, vol.136
, pp. 763-776
-
-
Houseley, J.1
Tollervey, D.2
-
20
-
-
0036285707
-
Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II
-
Licatalosi, D. D., et al. 2002. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9:1101-1111.
-
(2002)
Mol. Cell
, vol.9
, pp. 1101-1111
-
-
Licatalosi, D.D.1
-
21
-
-
33749257983
-
The disparate nature of "intergenic" polyadenylation sites
-
Lopez, F., S. Granjeaud, T. Ara, B. Ghattas, and D. Gautheret. 2006. The disparate nature of "intergenic" polyadenylation sites. RNA 12:1794-1801.
-
(2006)
RNA
, vol.12
, pp. 1794-1801
-
-
Lopez, F.1
Granjeaud, S.2
Ara, T.3
Ghattas, B.4
Gautheret, D.5
-
22
-
-
0031037856
-
The C-terminal domain of RNA polymerase II couples mRNA processing to transcription
-
McCracken, S., et al. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357-361.
-
(1997)
Nature
, vol.385
, pp. 357-361
-
-
McCracken, S.1
-
23
-
-
34247863985
-
Beyond the 3′ end: Experimental validation of extended transcript isoforms
-
Moucadel, V., F. Lopez, T. Ara, P. Benech, and D. Gautheret. 2007. Beyond the 3′ end: experimental validation of extended transcript isoforms. Nucleic Acids Res. 35:1947-1957.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 1947-1957
-
-
Moucadel, V.1
Lopez, F.2
Ara, T.3
Benech, P.4
Gautheret, D.5
-
24
-
-
33746555960
-
The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity
-
Nag, A., K. Narsinh, A. Kazerouninia, and H. G. Martinson. 2006. The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity. RNA 12: 1534-1544.
-
(2006)
RNA
, vol.12
, pp. 1534-1544
-
-
Nag, A.1
Narsinh, K.2
Kazerouninia, A.3
Martinson, H.G.4
-
25
-
-
77951977370
-
A functional human poly(A) site requires only a potent DSE and an A-rich upstream sequence
-
Nunes, N. M., W. Li, B. Tian, and A. Furger. 2010. A functional human poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J. 29:1523-1536.
-
(2010)
EMBO J.
, vol.29
, pp. 1523-1536
-
-
Nunes, N.M.1
Li, W.2
Tian, B.3
Furger, A.4
-
26
-
-
0037044807
-
The poly(A) signal, without the assistance of any downstream element, directs RNA polymerase II to pause in vivo and then to release stochastically from the template
-
Orozco, I. J., S. J. Kim, and H. G. Martinson. 2002. The poly(A) signal, without the assistance of any downstream element, directs RNA polymerase II to pause in vivo and then to release stochastically from the template. J. Biol. Chem. 277:42899-42911.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 42899-42911
-
-
Orozco, I.J.1
Kim, S.J.2
Martinson, H.G.3
-
27
-
-
33746403681
-
Controlling the elongation phase of transcription with P-TEFb
-
Peterlin, B. M., and D. H. Price. 2006. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23:297-305.
-
(2006)
Mol. Cell
, vol.23
, pp. 297-305
-
-
Peterlin, B.M.1
Price, D.H.2
-
28
-
-
2342505693
-
New perspectives on connecting messenger RNA 3′ end formation to transcription
-
Proudfoot, N. 2004. New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr. Opin. Cell Biol. 16:272-278.
-
(2004)
Curr. Opin. Cell Biol.
, vol.16
, pp. 272-278
-
-
Proudfoot, N.1
-
29
-
-
0037154967
-
Integrating mRNA processing with transcription
-
Proudfoot, N. J., A. Furger, and M. J. Dye. 2002. Integrating mRNA processing with transcription. Cell 108:501-512.
-
(2002)
Cell
, vol.108
, pp. 501-512
-
-
Proudfoot, N.J.1
Furger, A.2
Dye, M.J.3
-
30
-
-
85011942133
-
The intergenic spacer of the Drosophila Adh-Adhr dicistronic mRNA stimulates internal translation initiation
-
Ramanathan, P., J. Guo, R. N. Whitehead, and S. Brogna. 2008. The intergenic spacer of the Drosophila Adh-Adhr dicistronic mRNA stimulates internal translation initiation. RNA Biol. 5:149-156.
-
(2008)
RNA Biol.
, vol.5
, pp. 149-156
-
-
Ramanathan, P.1
Guo, J.2
Whitehead, R.N.3
Brogna, S.4
-
31
-
-
66149187105
-
Transcription termination by nuclear RNA polymerases
-
Richard, P., and J. L. Manley. 2009. Transcription termination by nuclear RNA polymerases. Genes Dev. 23:1247-1269.
-
(2009)
Genes Dev.
, vol.23
, pp. 1247-1269
-
-
Richard, P.1
Manley, J.L.2
-
32
-
-
0038219583
-
Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination
-
DOI 10.1093/emboj/cdg200
-
Sadowski, M., B. Dichtl, W. Hubner, and W. Keller. 2003. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J. 22:2167-2177. (Pubitemid 36565540)
-
(2003)
EMBO Journal
, vol.22
, Issue.9
, pp. 2167-2177
-
-
Sadowski, M.1
Dichtl, B.2
Hubner, W.3
Keller, W.4
-
33
-
-
59649122202
-
Molecular architecture of the human pre-mRNA 3′ processing complex
-
Shi, Y., et al. 2009. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol. Cell 33:365-376.
-
(2009)
Mol. Cell
, vol.33
, pp. 365-376
-
-
Shi, Y.1
-
34
-
-
0033614456
-
Detection of polyadenylation signals in human DNA sequences
-
Tabaska, J. E., and M. Q. Zhang. 1999. Detection of polyadenylation signals in human DNA sequences. Gene 231:77-86.
-
(1999)
Gene
, vol.231
, pp. 77-86
-
-
Tabaska, J.E.1
Zhang, M.Q.2
-
35
-
-
77953431827
-
Crystal structure of HIV-1 Tat complexed with human P-TEFb
-
Tahirov, T. H., et al. 2010. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465:747-751.
-
(2010)
Nature
, vol.465
, pp. 747-751
-
-
Tahirov, T.H.1
-
36
-
-
13744254695
-
A large-scale analysis of mRNA polyadenylation of human and mouse genes
-
Tian, B., J. Hu, H. Zhang, and C. S. Lutz. 2005. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 33:201-212.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. 201-212
-
-
Tian, B.1
Hu, J.2
Zhang, H.3
Lutz, C.S.4
-
37
-
-
33846870354
-
Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing
-
Tian, B., Z. Pan, and J. Y. Lee. 2007. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res. 17:156-165.
-
(2007)
Genome Res.
, vol.17
, pp. 156-165
-
-
Tian, B.1
Pan, Z.2
Lee, J.Y.3
-
38
-
-
49449110180
-
The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain
-
Vasiljeva, L., M. Kim, H. Mutschler, S. Buratowski, and A. Meinhart. 2008. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 15: 795-804.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 795-804
-
-
Vasiljeva, L.1
Kim, M.2
Mutschler, H.3
Buratowski, S.4
Meinhart, A.5
-
39
-
-
0028988016
-
3′-end cleavage and polyadenylation of mRNA precursors
-
Wahle, E. 1995. 3′-end cleavage and polyadenylation of mRNA precursors. Biochim. Biophys. Acta 1261:183-194.
-
(1995)
Biochim. Biophys. Acta
, vol.1261
, pp. 183-194
-
-
Wahle, E.1
-
41
-
-
39549110407
-
Human Pcf11 enhances degradation of RNA polymerase II-associated nascent RNA and transcriptional termination
-
West, S., and N. J. Proudfoot. 2008. Human Pcf11 enhances degradation of RNA polymerase II-associated nascent RNA and transcriptional termination. Nucleic Acids Res. 36:905-914.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 905-914
-
-
West, S.1
Proudfoot, N.J.2
-
42
-
-
23744467035
-
Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4
-
Yang, Z., et al. 2005. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19:535-545.
-
(2005)
Mol. Cell
, vol.19
, pp. 535-545
-
-
Yang, Z.1
-
43
-
-
22344443368
-
CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11
-
Zhang, Z., J. Fu, and D. S. Gilmour. 2005. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev. 19:1572-1580.
-
(2005)
Genes Dev.
, vol.19
, pp. 1572-1580
-
-
Zhang, Z.1
Fu, J.2
Gilmour, D.S.3
-
44
-
-
29544441415
-
Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript
-
Zhang, Z., and D. S. Gilmour. 2006. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol. Cell 21:65-74.
-
(2006)
Mol. Cell
, vol.21
, pp. 65-74
-
-
Zhang, Z.1
Gilmour, D.S.2
-
45
-
-
15144348173
-
Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro
-
Zhu, Y., et al. 1997. Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro. Genes Dev. 11:2622-2632.
-
(1997)
Genes Dev.
, vol.11
, pp. 2622-2632
-
-
Zhu, Y.1
|