-
1
-
-
4644253021
-
Neuronal glucosensing: what do we know after 50 years?
-
Levin BE, Routh VH, Kang L, Sanders NM, Dunn-Meynell AA. Neuronal glucosensing: what do we know after 50 years? Diabetes 2004; 53: 2521-2528.
-
(2004)
Diabetes
, vol.53
, pp. 2521-2528
-
-
Levin, B.E.1
Routh, V.H.2
Kang, L.3
Sanders, N.M.4
Dunn-Meynell, A.A.5
-
2
-
-
0036065157
-
Glucose-sensing neurons: are they physiologically relevant?
-
Routh VH. Glucose-sensing neurons: are they physiologically relevant? Physiol Behav 2002; 76: 403-413.
-
(2002)
Physiol Behav
, vol.76
, pp. 403-413
-
-
Routh, V.H.1
-
3
-
-
0034790747
-
Brain glucose-sensing mechanisms: ubiquitous silencing by aglycemia vs. hypothalamic neuroendocrine responses.
-
Mobbs CV, Kow LM, Yang XJ. Brain glucose-sensing mechanisms: ubiquitous silencing by aglycemia vs. hypothalamic neuroendocrine responses. Am J Physiol Endocrinol Metab 2001; 281: E649-E654.
-
(2001)
Am J Physiol Endocrinol Metab
, vol.281
-
-
Mobbs, C.V.1
Kow, L.M.2
Yang, X.J.3
-
4
-
-
0033515710
-
Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y.
-
Muroya S, Yada T, Shioda S, Takigawa M. Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci Lett 1999; 264: 113-116.
-
(1999)
Neurosci Lett
, vol.264
, pp. 113-116
-
-
Muroya, S.1
Yada, T.2
Shioda, S.3
Takigawa, M.4
-
5
-
-
0344512367
-
Minireview: nutrient sensing and the regulation of insulin action and energy balance.
-
Obici S, Rossetti L. Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology 2003; 144: 5172-5178.
-
(2003)
Endocrinology
, vol.144
, pp. 5172-5178
-
-
Obici, S.1
Rossetti, L.2
-
6
-
-
3242765290
-
The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides.
-
Wang R, Liu X, Hentges ST et al. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 2004; 53: 1959-1965.
-
(2004)
Diabetes
, vol.53
, pp. 1959-1965
-
-
Wang, R.1
Liu, X.2
Hentges, S.T.3
-
7
-
-
0036797549
-
Intracerebroventricular injection of fructose stimulates feeding in rats.
-
Miller CC, Martin RJ, Whitney ML, Edwards GL. Intracerebroventricular injection of fructose stimulates feeding in rats. Nutr Neurosci 2002; 5: 359-362.
-
(2002)
Nutr Neurosci
, vol.5
, pp. 359-362
-
-
Miller, C.C.1
Martin, R.J.2
Whitney, M.L.3
Edwards, G.L.4
-
8
-
-
18644362774
-
Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism.
-
Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 2005; 63: 133-157.
-
(2005)
Nutr Rev
, vol.63
, pp. 133-157
-
-
Havel, P.J.1
-
9
-
-
29744433021
-
Consuming fructose-sweetened beverages increases body adiposity in mice.
-
Jurgens H, Haass W, Castaneda TR et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res 2005; 13: 1146-1156.
-
(2005)
Obes Res
, vol.13
, pp. 1146-1156
-
-
Jurgens, H.1
Haass, W.2
Castaneda, T.R.3
-
10
-
-
9844261699
-
Glucose transporter Glut 5 expression in microglial cells.
-
Payne J, Maher F, Simpson I, Mattice L, Davies P. Glucose transporter Glut 5 expression in microglial cells. Glia 1997; 21: 327-331.
-
(1997)
Glia
, vol.21
, pp. 327-331
-
-
Payne, J.1
Maher, F.2
Simpson, I.3
Mattice, L.4
Davies, P.5
-
11
-
-
28044433666
-
Genes required for fructose metabolism are expressed in Purkinje cells in the cerebellum.
-
Funari VA, Herrera VL, Freeman D, Tolan DR. Genes required for fructose metabolism are expressed in Purkinje cells in the cerebellum. Brain Res Mol Brain Res 2005; 142: 115-122.
-
(2005)
Brain Res Mol Brain Res
, vol.142
, pp. 115-122
-
-
Funari, V.A.1
Herrera, V.L.2
Freeman, D.3
Tolan, D.R.4
-
12
-
-
0042303943
-
Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing.
-
Garcia MA, Millan C, Balmaceda-Aguilera C et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem 2003; 86: 709-724.
-
(2003)
J Neurochem
, vol.86
, pp. 709-724
-
-
Garcia, M.A.1
Millan, C.2
Balmaceda-Aguilera, C.3
-
13
-
-
55949086381
-
Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake.
-
Cha SH, Wolfgang M, Tokutake Y, Chohnan S, Lane MD. Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. Proc Natl Acad Sci U S A 2008; 105: 16871-16875.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 16871-16875
-
-
Cha, S.H.1
Wolfgang, M.2
Tokutake, Y.3
Chohnan, S.4
Lane, M.D.5
-
14
-
-
0034736185
-
Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex.
-
Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface SJ. Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience 2000; 101: 803-806.
-
(2000)
Neuroscience
, vol.101
, pp. 803-806
-
-
Arthurs, O.J.1
Williams, E.J.2
Carpenter, T.A.3
Pickard, J.D.4
Boniface, S.J.5
-
15
-
-
0035849892
-
Neurophysiological investigation of the basis of the fMRI signal.
-
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150-157.
-
(2001)
Nature
, vol.412
, pp. 150-157
-
-
Logothetis, N.K.1
Pauls, J.2
Augath, M.3
Trinath, T.4
Oeltermann, A.5
-
16
-
-
0033982159
-
In vivo fMRI demonstration of hypothalamic function following intraperitoneal glucose administration in a rat model.
-
Mahankali S, Liu Y, Pu Y et al. In vivo fMRI demonstration of hypothalamic function following intraperitoneal glucose administration in a rat model. Magn Reson Med 2000; 43: 155-159.
-
(2000)
Magn Reson Med
, vol.43
, pp. 155-159
-
-
Mahankali, S.1
Liu, Y.2
Pu, Y.3
-
17
-
-
0343526411
-
The temporal response of the brain after eating revealed by functional MRI.
-
Liu Y, Gao JH, Liu HL, Fox PT. The temporal response of the brain after eating revealed by functional MRI. Nature 2000; 405: 1058-1062.
-
(2000)
Nature
, vol.405
, pp. 1058-1062
-
-
Liu, Y.1
Gao, J.H.2
Liu, H.L.3
Fox, P.T.4
-
18
-
-
16244398656
-
Functional MRI of human hypothalamic responses following glucose ingestion.
-
Smeets PA, de Graaf C, Stafleu A, van Osch MJ, van der Grond J. Functional MRI of human hypothalamic responses following glucose ingestion. Neuroimage 2005; 24: 363-368.
-
(2005)
Neuroimage
, vol.24
, pp. 363-368
-
-
Smeets, P.A.1
de Graaf, C.2
Stafleu, A.3
van Osch, M.J.4
van der Grond, J.5
-
19
-
-
34948874237
-
Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes.
-
Vidarsdottir S, Smeets PA, Eichelsheim DL et al. Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes. Diabetes 2007; 56: 2547-2550.
-
(2007)
Diabetes
, vol.56
, pp. 2547-2550
-
-
Vidarsdottir, S.1
Smeets, P.A.2
Eichelsheim, D.L.3
-
20
-
-
34548444064
-
Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion.
-
Smeets PA, Vidarsdottir S, de Graaf C et al. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab 2007; 293: E754-E758.
-
(2007)
Am J Physiol Endocrinol Metab
, vol.293
-
-
Smeets, P.A.1
Vidarsdottir, S.2
de Graaf, C.3
-
21
-
-
0032856158
-
Altered hypothalamic function in response to glucose ingestion in obese humans.
-
Matsuda M, Liu Y, Mahankali S et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 1999; 48: 1801-1806.
-
(1999)
Diabetes
, vol.48
, pp. 1801-1806
-
-
Matsuda, M.1
Liu, Y.2
Mahankali, S.3
-
22
-
-
57749112843
-
Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety.
-
Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage 2009; 44: 1008-1021.
-
(2009)
Neuroimage
, vol.44
, pp. 1008-1021
-
-
Haase, L.1
Cerf-Ducastel, B.2
Murphy, C.3
-
23
-
-
0037456519
-
The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis.
-
Cowley MA, Smith RG, Diano S et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003; 37: 649-661.
-
(2003)
Neuron
, vol.37
, pp. 649-661
-
-
Cowley, M.A.1
Smith, R.G.2
Diano, S.3
-
24
-
-
44249123276
-
Metabolic and endocrine profiles in response to systemic infusion of fructose and glucose in rhesus macaques.
-
Adams SH, Stanhope KL, Grant RW, Cummings BP, Havel PJ. Metabolic and endocrine profiles in response to systemic infusion of fructose and glucose in rhesus macaques. Endocrinology 2008; 149: 3002-3008.
-
(2008)
Endocrinology
, vol.149
, pp. 3002-3008
-
-
Adams, S.H.1
Stanhope, K.L.2
Grant, R.W.3
Cummings, B.P.4
Havel, P.J.5
-
25
-
-
0024834748
-
Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach.
-
Bergman RN. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989; 38: 1512-1527.
-
(1989)
Diabetes
, vol.38
, pp. 1512-1527
-
-
Bergman, R.N.1
-
26
-
-
66449093225
-
Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans.
-
Stanhope KL, Schwarz JM, Keim NL et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 2009; 119: 1322-1334.
-
(2009)
J Clin Invest
, vol.119
, pp. 1322-1334
-
-
Stanhope, K.L.1
Schwarz, J.M.2
Keim, N.L.3
-
27
-
-
0036828347
-
Fructose, weight gain, and the insulin resistance syndrome.
-
Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 2002; 76: 911-922.
-
(2002)
Am J Clin Nutr
, vol.76
, pp. 911-922
-
-
Elliott, S.S.1
Keim, N.L.2
Stern, J.S.3
Teff, K.4
Havel, P.J.5
-
28
-
-
67649229596
-
Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway.
-
Cha SH, Lane MD. Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway. Biochem Biophys Res Commun 2009; 386: 212-216.
-
(2009)
Biochem Biophys Res Commun
, vol.386
, pp. 212-216
-
-
Cha, S.H.1
Lane, M.D.2
-
29
-
-
0037315042
-
Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia.
-
Niswender KD, Morrison CD, Clegg DJ et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 2003; 52: 227-231.
-
(2003)
Diabetes
, vol.52
, pp. 227-231
-
-
Niswender, K.D.1
Morrison, C.D.2
Clegg, D.J.3
-
30
-
-
34748898831
-
Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats.
-
Vahl TP, Tauchi M, Durler TS et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 2007; 148: 4965-4973.
-
(2007)
Endocrinology
, vol.148
, pp. 4965-4973
-
-
Vahl, T.P.1
Tauchi, M.2
Durler, T.S.3
-
31
-
-
0023118941
-
Regional cerebral blood flow decreases during chronic and acute hyperglycemia.
-
Duckrow RB, Beard DC, Brennan RW. Regional cerebral blood flow decreases during chronic and acute hyperglycemia. Stroke 1987; 18: 52-58.
-
(1987)
Stroke
, vol.18
, pp. 52-58
-
-
Duckrow, R.B.1
Beard, D.C.2
Brennan, R.W.3
-
32
-
-
0024261783
-
Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia.
-
Harik SI, LaManna JC. Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia. J Neurochem 1988; 51: 1924-1929.
-
(1988)
J Neurochem
, vol.51
, pp. 1924-1929
-
-
Harik, S.I.1
LaManna, J.C.2
-
33
-
-
0028806357
-
Decreased cerebral blood flow during acute hyperglycemia.
-
Duckrow RB. Decreased cerebral blood flow during acute hyperglycemia. Brain Res 1995; 703: 145-150.
-
(1995)
Brain Res
, vol.703
, pp. 145-150
-
-
Duckrow, R.B.1
-
34
-
-
0027398347
-
Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier.
-
Mantych GJ, James DE, Devaskar SU. Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier. Endocrinology 1993; 132: 35-40.
-
(1993)
Endocrinology
, vol.132
, pp. 35-40
-
-
Mantych, G.J.1
James, D.E.2
Devaskar, S.U.3
|