-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., and R. Kohavi. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-139.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0003408496
-
UCI repository of machine learning databases
-
Blake, C., E. Keogh, and C. J. Merz. 1998 UCI repository of machine learning databases http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(1998)
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
-
3
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Technical Report 460, Department of Statistics, University of California, Berkeley
-
Breiman, L. 1996. Bias, variance, and arcing classifiers. Technical Report 460, Department of Statistics, University of California, Berkeley.
-
(1996)
-
-
Breiman, L.1
-
7
-
-
0003642109
-
Boosting and naive Bayesian learning
-
Technical Report CS97-557, University of California, Davis
-
Elkan, C. 1997. Boosting and Naive Bayesian Learning. Technical Report CS97-557, University of California, Davis.
-
(1997)
-
-
Elkan, C.1
-
10
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J. H., T. Hastie, and R. Tibshirani. 2000. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28(2):337-374.
-
(2000)
Annals of Statistics
, vol.28
, Issue.2
, pp. 337-374
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
13
-
-
0003112380
-
Comparison of inductive and naive Bayesian learning approaches to automatic Knowledge Acquisition
-
Edited by B. Wielinga et al. IOS Press, Amsterdam
-
Kononenko, I. 1990. Comparison of inductive and naive Bayesian learning approaches to automatic Knowledge Acquisition. In Current Trends in Knowledge Acquisition. Edited by B. Wielinga et al. IOS Press, Amsterdam, pp. 190-197.
-
(1990)
Current Trends in Knowledge Acquisition
, pp. 190-197
-
-
Kononenko, I.1
-
14
-
-
0026992322
-
An analysis of Bayesian classifiers
-
AAAI Press, Menlo Park, CA
-
Langley, P., W. F. Iba, and K. Thompson. 1992. An analysis of Bayesian classifiers. In Proceedings of the Tenth National Conference on Artificial Intelligence. AAAI Press, Menlo Park, CA, pp. 223-228.
-
(1992)
Proceedings of the Tenth National Conference on Artificial Intelligence
, pp. 223-228
-
-
Langley, P.1
Iba, W.F.2
Thompson, K.3
-
16
-
-
0030370417
-
Bagging, boosting, and C4.5
-
AAAI Press, Menlo Park, CA
-
Quinlan, J. R. 1996. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference on Artificial Intelligence. AAAI Press, Menlo Park, CA, pp. 725-730.
-
(1996)
Proceedings of the Thirteenth National Conference on Artificial Intelligence
, pp. 725-730
-
-
Quinlan, J.R.1
-
17
-
-
85166318817
-
Interpretable boosted naive Bayes classification
-
Ridgeway, G., D. Madigan, T. Richardson, and J. O'Kane. 1998. Interpretable boosted naive Bayes classification. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, Menlo Park, CA, pp. 101-104.
-
(1998)
Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, Menlo Park, CA
, pp. 101-104
-
-
Ridgeway, G.1
Madigan, D.2
Richardson, T.3
O'Kane, J.4
-
18
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R. E., Y. Freund, P. Bartlett, and W. S. Lee. 1997. Boosting the margin: A new explanation for the effectiveness of voting methods. In Proceedings of the Fourteenth International Conference on Machine Learning. Morgan Kaufmann, San Francisco, pp. 322-330.
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning. Morgan Kaufmann, San Francisco
, pp. 322-330
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
19
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire, R. E., and Y. Singer. 1999. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
|