메뉴 건너뛰기




Volumn , Issue , 2010, Pages 299-308

Clustering with spectral norm and the k-means algorithm

Author keywords

[No Author keywords available]

Indexed keywords

MIXTURES; PROBABILITY DISTRIBUTIONS; STATISTICS;

EID: 78751511258     PISSN: 02725428     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FOCS.2010.35     Document Type: Conference Paper
Times cited : (206)

References (25)
  • 2
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S. Lloyd, "Least squares quantization in PCM," IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 129-137, 1982.
    • (1982) IEEE Transactions on Information Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 9
    • 33847128516 scopus 로고    scopus 로고
    • A probabilistic analysis of em for mixtures of separated, spherical gaussians
    • S. Dasgupta and L. J. Schulman, "A probabilistic analysis of em for mixtures of separated, spherical gaussians," Journal of Machine Learning Research, vol. 8, pp. 203-226, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 203-226
    • Dasgupta, S.1    Schulman, L.J.2
  • 11
    • 3042606899 scopus 로고    scopus 로고
    • A spectral algorithm for learning mixture models
    • S. Vempala and G. Wang, "A spectral algorithm for learning mixture models," J. Comput. Syst. Sci., vol. 68, no. 4, pp. 841-860, 2004.
    • (2004) J. Comput. Syst. Sci. , vol.68 , Issue.4 , pp. 841-860
    • Vempala, S.1    Wang, G.2
  • 13
    • 55249121402 scopus 로고    scopus 로고
    • The spectral method for general mixture models
    • R. Kannan, H. Salmasian, and S. Vempala, "The spectral method for general mixture models," SIAM J. Comput., vol. 38, no. 3, pp. 1141-1156, 2008.
    • (2008) SIAM J. Comput. , vol.38 , Issue.3 , pp. 1141-1156
    • Kannan, R.1    Salmasian, H.2    Vempala, S.3
  • 15
    • 78751543697 scopus 로고    scopus 로고
    • Learning convex concepts from gaussian distributions with pca
    • To appear in
    • S. Vempala, "Learning convex concepts from gaussian distributions with pca," To appear in IEEE FOCS, 2010.
    • (2010) IEEE FOCS
    • Vempala, S.1
  • 17
    • 76649116991 scopus 로고    scopus 로고
    • Beyond gaussians: Spectral methods for learning mixtures of heavy-tailed distributions
    • K. Chaudhuri and S. Rao, "Beyond gaussians: Spectral methods for learning mixtures of heavy-tailed distributions," in Proc. 24th Annual Conference on Learning Theory, 2008, pp. 21-32.
    • Proc. 24th Annual Conference on Learning Theory, 2008 , pp. 21-32
    • Chaudhuri, K.1    Rao, S.2
  • 19
    • 0035186726 scopus 로고    scopus 로고
    • Spectral partitioning of random graphs
    • F. McSherry, "Spectral partitioning of random graphs," in Proc. 42nd IEEE FOCS, 2001, pp. 529-537.
    • Proc. 42nd IEEE FOCS, 2001 , pp. 529-537
    • McSherry, F.1
  • 22
    • 76849111564 scopus 로고    scopus 로고
    • Linear-time approximation schemes for clustering problems in any dimensions
    • A. Kumar, Y. Sabharwal, and S. Sen, "Linear-time approximation schemes for clustering problems in any dimensions," J. ACM, vol. 57, no. 2, 2010.
    • (2010) J. ACM , vol.57 , Issue.2
    • Kumar, A.1    Sabharwal, Y.2    Sen, S.3
  • 24
    • 70449722914 scopus 로고    scopus 로고
    • Adaptive sampling for k-means clustering
    • A. Aggarwal, A. Deshpande, and R. Kannan, "Adaptive sampling for k-means clustering," in APPROX-RANDOM, 2009, pp. 15-28.
    • (2009) APPROX-RANDOM , pp. 15-28
    • Aggarwal, A.1    Deshpande, A.2    Kannan, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.