-
1
-
-
70350649112
-
Spectral algorithms
-
R. Kannan and S. Vempala, "Spectral algorithms," Foundations and Trends in Theoretical Computer Science, vol. 4, no. 3-4, pp. 157-288, 2009.
-
(2009)
Foundations and Trends in Theoretical Computer Science
, vol.4
, Issue.3-4
, pp. 157-288
-
-
Kannan, R.1
Vempala, S.2
-
2
-
-
0020102027
-
Least squares quantization in PCM
-
S. Lloyd, "Least squares quantization in PCM," IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 129-137, 1982.
-
(1982)
IEEE Transactions on Information Theory
, vol.28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.1
-
3
-
-
35348899361
-
The effectiveness of lloyd-type methods for the k-means problem
-
R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy, "The effectiveness of lloyd-type methods for the k-means problem," in Proc. 47th IEEE FOCS, 2006, pp. 165-176.
-
Proc. 47th IEEE FOCS, 2006
, pp. 165-176
-
-
Ostrovsky, R.1
Rabani, Y.2
Schulman, L.J.3
Swamy, C.4
-
7
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the em algorithm," Journal of the Royal Statistical Society, Series B, vol. 39, no. 1, pp. 1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
33847128516
-
A probabilistic analysis of em for mixtures of separated, spherical gaussians
-
S. Dasgupta and L. J. Schulman, "A probabilistic analysis of em for mixtures of separated, spherical gaussians," Journal of Machine Learning Research, vol. 8, pp. 203-226, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 203-226
-
-
Dasgupta, S.1
Schulman, L.J.2
-
11
-
-
3042606899
-
A spectral algorithm for learning mixture models
-
S. Vempala and G. Wang, "A spectral algorithm for learning mixture models," J. Comput. Syst. Sci., vol. 68, no. 4, pp. 841-860, 2004.
-
(2004)
J. Comput. Syst. Sci.
, vol.68
, Issue.4
, pp. 841-860
-
-
Vempala, S.1
Wang, G.2
-
13
-
-
55249121402
-
The spectral method for general mixture models
-
R. Kannan, H. Salmasian, and S. Vempala, "The spectral method for general mixture models," SIAM J. Comput., vol. 38, no. 3, pp. 1141-1156, 2008.
-
(2008)
SIAM J. Comput.
, vol.38
, Issue.3
, pp. 1141-1156
-
-
Kannan, R.1
Salmasian, H.2
Vempala, S.3
-
15
-
-
78751543697
-
Learning convex concepts from gaussian distributions with pca
-
To appear in
-
S. Vempala, "Learning convex concepts from gaussian distributions with pca," To appear in IEEE FOCS, 2010.
-
(2010)
IEEE FOCS
-
-
Vempala, S.1
-
16
-
-
33748591338
-
On learning mixtures of heavy-tailed distributions
-
A. Dasgupta, J. E. Hopcroft, J. M. Kleinberg, and M. Sandler, "On learning mixtures of heavy-tailed distributions," in Proc. 46th IEEE FOCS, 2005, pp. 491-500.
-
Proc. 46th IEEE FOCS, 2005
, pp. 491-500
-
-
Dasgupta, A.1
Hopcroft, J.E.2
Kleinberg, J.M.3
Sandler, M.4
-
18
-
-
84969141839
-
Spectral clustering with limited independence
-
A. Dasgupta, J. E. Hopcroft, R. Kannan, and P. P. Mitra, "Spectral clustering with limited independence," in Proc. ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 1036-1045.
-
Proc. ACM-SIAM Symposium on Discrete Algorithms, 2007
, pp. 1036-1045
-
-
Dasgupta, A.1
Hopcroft, J.E.2
Kannan, R.3
Mitra, P.P.4
-
19
-
-
0035186726
-
Spectral partitioning of random graphs
-
F. McSherry, "Spectral partitioning of random graphs," in Proc. 42nd IEEE FOCS, 2001, pp. 529-537.
-
Proc. 42nd IEEE FOCS, 2001
, pp. 529-537
-
-
McSherry, F.1
-
20
-
-
70349129917
-
Approximate clustering without the approximation
-
M.-F. Balcan, A. Blum, and A. Gupta, "Approximate clustering without the approximation," in Proc. ACM-SIAM Symposium on Discrete Algorithms, 2009, pp. 1068-1077.
-
Proc. ACM-SIAM Symposium on Discrete Algorithms, 2009
, pp. 1068-1077
-
-
Balcan, M.-F.1
Blum, A.2
Gupta, A.3
-
21
-
-
57049163657
-
A discriminative framework for clustering via similarity functions
-
M.-F. Balcan, A. Blum, and S. Vempala, "A discriminative framework for clustering via similarity functions," in Proc. 40th Annual ACM Symposium on Theory of Computing, 2008, pp. 671-680.
-
Proc. 40th Annual ACM Symposium on Theory of Computing, 2008
, pp. 671-680
-
-
Balcan, M.-F.1
Blum, A.2
Vempala, S.3
-
22
-
-
76849111564
-
Linear-time approximation schemes for clustering problems in any dimensions
-
A. Kumar, Y. Sabharwal, and S. Sen, "Linear-time approximation schemes for clustering problems in any dimensions," J. ACM, vol. 57, no. 2, 2010.
-
(2010)
J. ACM
, vol.57
, Issue.2
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
24
-
-
70449722914
-
Adaptive sampling for k-means clustering
-
A. Aggarwal, A. Deshpande, and R. Kannan, "Adaptive sampling for k-means clustering," in APPROX-RANDOM, 2009, pp. 15-28.
-
(2009)
APPROX-RANDOM
, pp. 15-28
-
-
Aggarwal, A.1
Deshpande, A.2
Kannan, R.3
-
25
-
-
0036361823
-
A local search approximation algorithm for k-means clustering
-
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, "A local search approximation algorithm for k-means clustering," in Proc. 18th Annual Symposium on Computational Geometry, 2002, pp. 10-18.
-
Proc. 18th Annual Symposium on Computational Geometry, 2002
, pp. 10-18
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.S.3
Piatko, C.D.4
Silverman, R.5
Wu, A.Y.6
|