메뉴 건너뛰기




Volumn 250, Issue 4, 2011, Pages 1767-1787

Monotone traveling wavefronts of the KPP-Fisher delayed equation

Author keywords

Existence; Heteroclinic solutions; KPP Fisher delayed reaction diffusion equation; Monotone positive traveling wave; Uniqueness

Indexed keywords


EID: 78650995938     PISSN: 00220396     EISSN: 10902732     Source Type: Journal    
DOI: 10.1016/j.jde.2010.11.011     Document Type: Article
Times cited : (68)

References (41)
  • 1
    • 0018569774 scopus 로고
    • Explicit solution of Fisher's equation for a special wave speed
    • Ablowitz M.J., Zeppetella A. Explicit solution of Fisher's equation for a special wave speed. Bull. Math. Biol. 1979, 41:835-840.
    • (1979) Bull. Math. Biol. , vol.41 , pp. 835-840
    • Ablowitz, M.J.1    Zeppetella, A.2
  • 2
    • 33750189759 scopus 로고    scopus 로고
    • Traveling wave fronts for generalized Fisher equations with spatio-temporal delays
    • Ai S. Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differential Equations 2007, 232:104-133.
    • (2007) J. Differential Equations , vol.232 , pp. 104-133
    • Ai, S.1
  • 3
    • 49749103184 scopus 로고    scopus 로고
    • Uniqueness of fast traveling fronts in a single species reaction-diffusion equation with delay
    • Aguerrea M., Trofimchuk S., Valenzuela G. Uniqueness of fast traveling fronts in a single species reaction-diffusion equation with delay. Proc. R. Soc. A 2008, 464:2591-2608.
    • (2008) Proc. R. Soc. A , vol.464 , pp. 2591-2608
    • Aguerrea, M.1    Trofimchuk, S.2    Valenzuela, G.3
  • 5
    • 39749182716 scopus 로고    scopus 로고
    • Perron theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations
    • Boumenir A., Nguyen V.M. Perron theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations. J. Differential Equations 2008, 244:1551-1570.
    • (2008) J. Differential Equations , vol.244 , pp. 1551-1570
    • Boumenir, A.1    Nguyen, V.M.2
  • 6
    • 0003175686 scopus 로고
    • Convergence of solutions of the Kolmogorov equation to traveling waves
    • Bramson M. Convergence of solutions of the Kolmogorov equation to traveling waves. Mem. Amer. Math. Soc. 1983, 44(285).
    • (1983) Mem. Amer. Math. Soc. , vol.44 , Issue.285
    • Bramson, M.1
  • 7
    • 3142699474 scopus 로고    scopus 로고
    • Uniqueness of travelling waves for nonlocal monostable equations
    • Carr J., Chmaj A. Uniqueness of travelling waves for nonlocal monostable equations. Proc. Amer. Math. Soc. 2004, 132:2433-2439.
    • (2004) Proc. Amer. Math. Soc. , vol.132 , pp. 2433-2439
    • Carr, J.1    Chmaj, A.2
  • 8
    • 43049112828 scopus 로고    scopus 로고
    • Nonlocal anisotropic dispersal with monostable nonlinearity
    • Coville J., Dávila J., Martínez S. Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differential Equations 2008, 244:3080-3118.
    • (2008) J. Differential Equations , vol.244 , pp. 3080-3118
    • Coville, J.1    Dávila, J.2    Martínez, S.3
  • 9
    • 0003254098 scopus 로고
    • Stability of Solutions of Differential Equations in Banach Space
    • Amer. Math. Soc., Providence, RI
    • Daleckii J.L., Krein M.G. Stability of Solutions of Differential Equations in Banach Space. Transl. Math. Monogr. 1974, vol. 43. Amer. Math. Soc., Providence, RI.
    • (1974) Transl. Math. Monogr. , vol.43
    • Daleckii, J.L.1    Krein, M.G.2
  • 10
    • 0000360728 scopus 로고
    • On the bounded solutions of a nonlinear convolution equation
    • Diekmann O., Kaper H.G. On the bounded solutions of a nonlinear convolution equation. Nonlinear Anal. 1978, 2:721-737.
    • (1978) Nonlinear Anal. , vol.2 , pp. 721-737
    • Diekmann, O.1    Kaper, H.G.2
  • 11
    • 0003709960 scopus 로고
    • The Asymptotic Solution of Linear Differential Systems
    • Clarendon Press, Oxford
    • Eastham M.S.P. The Asymptotic Solution of Linear Differential Systems. London Math. Soc. Monogr. Ser. 1989, Clarendon Press, Oxford.
    • (1989) London Math. Soc. Monogr. Ser.
    • Eastham, M.S.P.1
  • 12
    • 33745920917 scopus 로고    scopus 로고
    • Traveling waves for delayed reaction-diffusion equations with non-local response
    • Faria T., Huang W., Wu J. Traveling waves for delayed reaction-diffusion equations with non-local response. Proc. R. Soc. A 2006, 462:229-261.
    • (2006) Proc. R. Soc. A , vol.462 , pp. 229-261
    • Faria, T.1    Huang, W.2    Wu, J.3
  • 13
    • 33745891805 scopus 로고    scopus 로고
    • Non-monotone traveling waves in a single species reaction-diffusion equation with delay
    • Faria T., Trofimchuk S. Non-monotone traveling waves in a single species reaction-diffusion equation with delay. J. Differential Equations 2006, 228:357-376.
    • (2006) J. Differential Equations , vol.228 , pp. 357-376
    • Faria, T.1    Trofimchuk, S.2
  • 14
    • 78149345393 scopus 로고    scopus 로고
    • Positive travelling fronts for reaction-diffusion systems with distributed delay
    • Faria T., Trofimchuk S. Positive travelling fronts for reaction-diffusion systems with distributed delay. Nonlinearity 2010, 23:2457-2481.
    • (2010) Nonlinearity , vol.23 , pp. 2457-2481
    • Faria, T.1    Trofimchuk, S.2
  • 15
    • 0000268135 scopus 로고
    • The wave of advance of advantageous gene
    • Fisher R.A. The wave of advance of advantageous gene. Ann. Eugen. 1937, 7:355-369.
    • (1937) Ann. Eugen. , vol.7 , pp. 355-369
    • Fisher, R.A.1
  • 16
    • 38249012325 scopus 로고
    • Exponentially growing solutions for a delay-diffusion equation with negative feedback
    • Friesecke G. Exponentially growing solutions for a delay-diffusion equation with negative feedback. J. Differential Equations 1992, 98:1-18.
    • (1992) J. Differential Equations , vol.98 , pp. 1-18
    • Friesecke, G.1
  • 17
    • 84985405417 scopus 로고
    • Oscillations and convergence in a diffusive delay logistic equation
    • Gopalsamy K., He X.-Z., Sun D.Q. Oscillations and convergence in a diffusive delay logistic equation. Math. Nachr. 1993, 164:219-237.
    • (1993) Math. Nachr. , vol.164 , pp. 219-237
    • Gopalsamy, K.1    He, X.-Z.2    Sun, D.Q.3
  • 18
    • 0034277973 scopus 로고    scopus 로고
    • Travelling front solutions of a nonlocal Fisher equation
    • Gourley S.A. Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 2000, 41:272-284.
    • (2000) J. Math. Biol. , vol.41 , pp. 272-284
    • Gourley, S.A.1
  • 19
    • 40549134462 scopus 로고    scopus 로고
    • Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts
    • Hadeler K.P. Transport, reaction, and delay in mathematical biology, and the inverse problem for traveling fronts. J. Math. Sci. 2008, 149:1658-1678.
    • (2008) J. Math. Sci. , vol.149 , pp. 1658-1678
    • Hadeler, K.P.1
  • 20
    • 33645084765 scopus 로고
    • Circular causal systems in ecology
    • Hutchinson G.E. Circular causal systems in ecology. Ann. New York Acad. Sci. 1948, 50:221-246.
    • (1948) Ann. New York Acad. Sci. , vol.50 , pp. 221-246
    • Hutchinson, G.E.1
  • 21
    • 84972539437 scopus 로고
    • On the semilinear heat equation with time-lag
    • Kobayashi K. On the semilinear heat equation with time-lag. Hiroshima Math. J. 1977, 7:459-472.
    • (1977) Hiroshima Math. J. , vol.7 , pp. 459-472
    • Kobayashi, K.1
  • 22
    • 0002722044 scopus 로고
    • Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem
    • Kolmogorov A., Petrovskii I., Piskunov N. Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem. Byul. Mosk. Gos. Univ. Ser. A Mat. Mekh. 1937, 1:1-26.
    • (1937) Byul. Mosk. Gos. Univ. Ser. A Mat. Mekh. , vol.1 , pp. 1-26
    • Kolmogorov, A.1    Petrovskii, I.2    Piskunov, N.3
  • 23
    • 77952955069 scopus 로고    scopus 로고
    • Existence and nonexistence of monotone traveling waves for the delayed Fisher equation
    • Kwong M.K., Ou C. Existence and nonexistence of monotone traveling waves for the delayed Fisher equation. J. Differential Equations 2010, 249:728-745.
    • (2010) J. Differential Equations , vol.249 , pp. 728-745
    • Kwong, M.K.1    Ou, C.2
  • 24
    • 0010697043 scopus 로고
    • On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov
    • Lau K.-S. On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov. J. Differential Equations 1985, 59:44-70.
    • (1985) J. Differential Equations , vol.59 , pp. 44-70
    • Lau, K.-S.1
  • 25
    • 0001591165 scopus 로고
    • Global boundedness for a delay-differential equation
    • Luckhaus S. Global boundedness for a delay-differential equation. Trans. Amer. Math. Soc. 1986, 294:767-774.
    • (1986) Trans. Amer. Math. Soc. , vol.294 , pp. 767-774
    • Luckhaus, S.1
  • 26
    • 0035836903 scopus 로고    scopus 로고
    • Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem
    • Ma S. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differential Equations 2001, 171:294-314.
    • (2001) J. Differential Equations , vol.171 , pp. 294-314
    • Ma, S.1
  • 27
    • 0001935025 scopus 로고    scopus 로고
    • The Fredholm alternative for functional differential equations of mixed type
    • Mallet-Paret J. The Fredholm alternative for functional differential equations of mixed type. J. Dynam. Differential Equations 1999, 11:1-48.
    • (1999) J. Dynam. Differential Equations , vol.11 , pp. 1-48
    • Mallet-Paret, J.1
  • 28
    • 39449114549 scopus 로고    scopus 로고
    • Traveling wavefronts in a delayed food-limited population model
    • Ou C., Wu J. Traveling wavefronts in a delayed food-limited population model. SIAM J. Math. Anal. 2007, 39:103-125.
    • (2007) SIAM J. Math. Anal. , vol.39 , pp. 103-125
    • Ou, C.1    Wu, J.2
  • 29
    • 56549089517 scopus 로고    scopus 로고
    • Asymptotic behavior of traveling fronts of the delayed Fisher equation
    • Pan S. Asymptotic behavior of traveling fronts of the delayed Fisher equation. Nonlinear Anal. Real World Appl. 2009, 10:1173-1182.
    • (2009) Nonlinear Anal. Real World Appl. , vol.10 , pp. 1173-1182
    • Pan, S.1
  • 30
    • 0007312917 scopus 로고    scopus 로고
    • Stability of fronts for a KPP-system. II. The critical case
    • Raugel G., Kirchgässner K. Stability of fronts for a KPP-system. II. The critical case. J. Differential Equations 1998, 146:399-456.
    • (1998) J. Differential Equations , vol.146 , pp. 399-456
    • Raugel, G.1    Kirchgässner, K.2
  • 32
    • 0001584326 scopus 로고
    • Asymptotic behavior and traveling wave solutions for parabolic functional differential equations
    • Schaaf K. Asymptotic behavior and traveling wave solutions for parabolic functional differential equations. Trans. Amer. Math. Soc. 1987, 302:587-615.
    • (1987) Trans. Amer. Math. Soc. , vol.302 , pp. 587-615
    • Schaaf, K.1
  • 33
    • 49549088343 scopus 로고    scopus 로고
    • Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay
    • Trofimchuk E., Tkachenko V., Trofimchuk S. Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay. J. Differential Equations 2008, 245:2307-2332.
    • (2008) J. Differential Equations , vol.245 , pp. 2307-2332
    • Trofimchuk, E.1    Tkachenko, V.2    Trofimchuk, S.3
  • 34
    • 58349107024 scopus 로고    scopus 로고
    • On the geometry of wave solutions of a delayed reaction-diffusion equation
    • Trofimchuk E., Alvarado P., Trofimchuk S. On the geometry of wave solutions of a delayed reaction-diffusion equation. J. Differential Equations 2009, 246:1422-1444.
    • (2009) J. Differential Equations , vol.246 , pp. 1422-1444
    • Trofimchuk, E.1    Alvarado, P.2    Trofimchuk, S.3
  • 35
    • 32044459052 scopus 로고    scopus 로고
    • Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays
    • Wang Z.-C., Li W.T., Ruan S. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays. J. Differential Equations 2006, 222:185-232.
    • (2006) J. Differential Equations , vol.222 , pp. 185-232
    • Wang, Z.-C.1    Li, W.T.2    Ruan, S.3
  • 36
    • 47149104525 scopus 로고    scopus 로고
    • Traveling fronts in monostable equations with nonlocal delayed effects
    • Wang Z.-C., Li W.T., Ruan S. Traveling fronts in monostable equations with nonlocal delayed effects. J. Dynam. Differential Equations 2008, 20:573-607.
    • (2008) J. Dynam. Differential Equations , vol.20 , pp. 573-607
    • Wang, Z.-C.1    Li, W.T.2    Ruan, S.3
  • 37
    • 0010119926 scopus 로고
    • The Laplace Transform
    • Princeton University Press,
    • Widder D.V. The Laplace Transform. Princeton Math. Ser. 1941, vol. 6. Princeton University Press, 406 pp.
    • (1941) Princeton Math. Ser. , vol.6 , pp. 406
    • Widder, D.V.1
  • 38
    • 0343717093 scopus 로고    scopus 로고
    • Traveling wave fronts of reaction-diffusion systems with delay
    • Wu J., Zou X. Traveling wave fronts of reaction-diffusion systems with delay. J. Dynam. Differential Equations 2001, 13:651-687.
    • (2001) J. Dynam. Differential Equations , vol.13 , pp. 651-687
    • Wu, J.1    Zou, X.2
  • 39
    • 36549057845 scopus 로고    scopus 로고
    • Irregular behavior of solutions for Fisher's equation
    • Yanagida E. Irregular behavior of solutions for Fisher's equation. J. Dynam. Differential Equations 2007, 19:895-914.
    • (2007) J. Dynam. Differential Equations , vol.19 , pp. 895-914
    • Yanagida, E.1
  • 40
    • 84972506868 scopus 로고
    • The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology
    • Yoshida K. The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 1982, 12:321-348.
    • (1982) Hiroshima Math. J. , vol.12 , pp. 321-348
    • Yoshida, K.1
  • 41
    • 0037106115 scopus 로고    scopus 로고
    • Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type
    • Zou X. Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type. J. Comput. Appl. Math. 2002, 146:309-321.
    • (2002) J. Comput. Appl. Math. , vol.146 , pp. 309-321
    • Zou, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.