메뉴 건너뛰기




Volumn 222, Issue 1, 2006, Pages 185-232

Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays

Author keywords

34K10; 35B20; 35K57; Integral operator; Iterative techniques; Quasimonotonicity; Reaction diffusion systems; Spatio temporal delays; Travelling wave fronts

Indexed keywords


EID: 32044459052     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jde.2005.08.010     Document Type: Article
Times cited : (241)

References (36)
  • 1
    • 0344578958 scopus 로고    scopus 로고
    • Monotone traveling fronts in age-structured reaction-diffusion model of a single species
    • J. Al-Omari S.A. Gourley Monotone traveling fronts in age-structured reaction-diffusion model of a single species J. Math. Biol. 45 2002 294-312
    • (2002) J. Math. Biol. , vol.45 , pp. 294-312
    • Al-Omari, J.1    Gourley, S.A.2
  • 3
    • 0346040342 scopus 로고    scopus 로고
    • Dynamics of a strongly nonlocal reaction-diffusion population model
    • J. Billingham Dynamics of a strongly nonlocal reaction-diffusion population model Nonlinearity 17 2004 313-346
    • (2004) Nonlinearity , vol.17 , pp. 313-346
    • Billingham, J.1
  • 5
    • 0024965270 scopus 로고
    • Aggregation and the competitive exclusion principle
    • N.F. Britton Aggregation and the competitive exclusion principle J. Theoret. Biol. 136 1989 57-66
    • (1989) J. Theoret. Biol. , vol.136 , pp. 57-66
    • Britton, N.F.1
  • 6
    • 0025545718 scopus 로고
    • Spatial structures and periodic travelling waves in an integro-deferential reaction-diffusion population model
    • N.F. Britton Spatial structures and periodic travelling waves in an integro-deferential reaction-diffusion population model SIAM J. Appl. Math. 50 1990 1663-1688
    • (1990) SIAM J. Appl. Math. , vol.50 , pp. 1663-1688
    • Britton, N.F.1
  • 7
    • 34250627892 scopus 로고
    • Geometric singular perturbation theory for ordinary differential equations
    • N. Fenichel Geometric singular perturbation theory for ordinary differential equations J. Differential Equations 31 1979 53-98
    • (1979) J. Differential Equations , vol.31 , pp. 53-98
    • Fenichel, N.1
  • 9
    • 0034277973 scopus 로고    scopus 로고
    • Travelling front solutions of a nonlocal Fisher equation
    • S.A. Gourley Travelling front solutions of a nonlocal Fisher equation J. Math. Biol. 41 2000 272-284
    • (2000) J. Math. Biol. , vol.41 , pp. 272-284
    • Gourley, S.A.1
  • 10
    • 0033752098 scopus 로고    scopus 로고
    • Travelling fronts in the diffusive Nicholson's blowflies equation with distributed delays
    • S.A. Gourley Travelling fronts in the diffusive Nicholson's blowflies equation with distributed delays Math. Comput. Modelling 32 2000 843-853
    • (2000) Math. Comput. Modelling , vol.32 , pp. 843-853
    • Gourley, S.A.1
  • 11
    • 0035500330 scopus 로고    scopus 로고
    • Wave front solutions of a diffusive delay model for populations of daphnia maga
    • S.A. Gourley Wave front solutions of a diffusive delay model for populations of daphnia maga Comput. Math. Appl. 42 2001 1421-1430
    • (2001) Comput. Math. Appl. , vol.42 , pp. 1421-1430
    • Gourley, S.A.1
  • 12
    • 38249004015 scopus 로고
    • On a modified Volterra population equation with diffusion
    • S.A. Gourley N.F. Britton On a modified Volterra population equation with diffusion Nonlinear Anal. 21 1993 389-395
    • (1993) Nonlinear Anal. , vol.21 , pp. 389-395
    • Gourley, S.A.1    Britton, N.F.2
  • 13
    • 0012189671 scopus 로고    scopus 로고
    • A predator-prey reaction-diffusion system with nonlocal effects
    • S.A. Gourley N.F. Britton A predator-prey reaction-diffusion system with nonlocal effects J. Math. Biol. 34 1996 297-333
    • (1996) J. Math. Biol. , vol.34 , pp. 297-333
    • Gourley, S.A.1    Britton, N.F.2
  • 14
    • 0035384407 scopus 로고    scopus 로고
    • Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation
    • S.A. Gourley M.A.J. Chaplain F.A. Davidson Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation Dynamical Systems 16 2001 173-192
    • (2001) Dynamical Systems , vol.16 , pp. 173-192
    • Gourley, S.A.1    Chaplain, M.A.J.2    Davidson, F.A.3
  • 15
    • 1542616886 scopus 로고    scopus 로고
    • Wavefronts and global stability in a time-delayed population model with stage structure
    • S.A. Gourley Y. Kuang Wavefronts and global stability in a time-delayed population model with stage structure Proc. Roy. Soc. Lond. A 59 2003 1563-1579
    • (2003) Proc. Roy. Soc. Lond. A , vol.59 , pp. 1563-1579
    • Gourley, S.A.1    Kuang, Y.2
  • 16
    • 2442624461 scopus 로고    scopus 로고
    • Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model
    • S.A. Gourley S. Ruan Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model SIAM J. Math. Anal. 35 2003 806-822
    • (2003) SIAM J. Math. Anal. , vol.35 , pp. 806-822
    • Gourley, S.A.1    Ruan, S.2
  • 17
    • 0037101519 scopus 로고    scopus 로고
    • Travelling wavefronts in diffusive and cooperative Lotka-Volterra system with delays
    • J. Huang X. Zou Travelling wavefronts in diffusive and cooperative Lotka-Volterra system with delays J. Math. Anal. Appl. 271 2002 455-466
    • (2002) J. Math. Anal. Appl. , vol.271 , pp. 455-466
    • Huang, J.1    Zou, X.2
  • 18
    • 0038739403 scopus 로고    scopus 로고
    • Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity
    • J. Huang X. Zou Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity Discrete Continuous Dynamical Systems 9 2003 925-936
    • (2003) Discrete Continuous Dynamical Systems , vol.9 , pp. 925-936
    • Huang, J.1    Zou, X.2
  • 19
    • 0037332649 scopus 로고    scopus 로고
    • Travelling wavefronts of reaction-diffusion equations with and without delays
    • RWA
    • K. Lan J. Wu Travelling wavefronts of reaction-diffusion equations with and without delays Nonlinear Anal. RWA 4 2003 173-188
    • (2003) Nonlinear Anal. , vol.4 , pp. 173-188
    • Lan, K.1    Wu, J.2
  • 21
    • 84867929521 scopus 로고    scopus 로고
    • Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects
    • D. Liang J. Wu Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects J. Nonlinear Sci. 13 2003 289-310
    • (2003) J. Nonlinear Sci. , vol.13 , pp. 289-310
    • Liang, D.1    Wu, J.2
  • 22
    • 0035836903 scopus 로고    scopus 로고
    • Travelling wavefronts for delayed reaction-diffusion systems via a fixed point theorem
    • S. Ma Travelling wavefronts for delayed reaction-diffusion systems via a fixed point theorem J. Differential Equations 171 2001 294-314
    • (2001) J. Differential Equations , vol.171 , pp. 294-314
    • Ma, S.1
  • 25
    • 10044257560 scopus 로고    scopus 로고
    • Stability of steady states and existence of traveling waves in a vector disease model
    • S. Ruan D. Xiao Stability of steady states and existence of traveling waves in a vector disease model Proc. Roy. Soc. Edinburgh Sect. A 134 2004 991-1011
    • (2004) Proc. Roy. Soc. Edinburgh Sect. A , vol.134 , pp. 991-1011
    • Ruan, S.1    Xiao, D.2
  • 26
    • 0001584326 scopus 로고
    • Asymptotic behavior and travelling wave solutions for parabolic functional differential equations
    • K.W. Schaaf Asymptotic behavior and travelling wave solutions for parabolic functional differential equations Trans. Amer. Math. Soc. 302 1987 587-615
    • (1987) Trans. Amer. Math. Soc. , vol.302 , pp. 587-615
    • Schaaf, K.W.1
  • 28
    • 32044440101 scopus 로고    scopus 로고
    • A reaction-diffusion model for a single species with age structure. I, Travelling wavefronts on unbounded domains
    • J.W.-H. So J. Wu X. Zou A reaction-diffusion model for a single species with age structure. I, Travelling wavefronts on unbounded domains Proc. Roy. Soc. Lond. A 457 2003 1841-1853
    • (2003) Proc. Roy. Soc. Lond. A , vol.457 , pp. 1841-1853
    • So, J.W.-H.1    Wu, J.2    Zou, X.3
  • 29
    • 0035882630 scopus 로고    scopus 로고
    • Travelling waves for the diffusive Nicholson's blowflies equation
    • J.W.-H. So X. Zou Travelling waves for the diffusive Nicholson's blowflies equation Appl. Math. Comput. 122 2001 385-392
    • (2001) Appl. Math. Comput. , vol.122 , pp. 385-392
    • So, J.W.-H.1    Zou, X.2
  • 30
    • 1942472647 scopus 로고    scopus 로고
    • Travelling wavefronts in the diffusive single species model with Allee effect and distributed delay
    • Y. Song Y. Peng M. Han Travelling wavefronts in the diffusive single species model with Allee effect and distributed delay Appl. Math. Comput. 152 2004 483-497
    • (2004) Appl. Math. Comput. , vol.152 , pp. 483-497
    • Song, Y.1    Peng, Y.2    Han, M.3
  • 33
    • 0343717093 scopus 로고    scopus 로고
    • Travelling wave fronts of reaction-diffusion systems with delay
    • J. Wu X. Zou Travelling wave fronts of reaction-diffusion systems with delay J. Dynamical Differential Equations 13 2001 651-687
    • (2001) J. Dynamical Differential Equations , vol.13 , pp. 651-687
    • Wu, J.1    Zou, X.2
  • 35
    • 0037106115 scopus 로고    scopus 로고
    • Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type
    • X. Zou Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type J. Comput. Appl. Math. 146 2002 309-321
    • (2002) J. Comput. Appl. Math. , vol.146 , pp. 309-321
    • Zou, X.1
  • 36
    • 21944443660 scopus 로고    scopus 로고
    • Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method
    • X. Zou J. Wu Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method Proc. Amer. Math. Soc. 125 1997 2589-2598
    • (1997) Proc. Amer. Math. Soc. , vol.125 , pp. 2589-2598
    • Zou, X.1    Wu, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.