메뉴 건너뛰기




Volumn 246, Issue 4, 2009, Pages 1422-1444

On the geometry of wave solutions of a delayed reaction-diffusion equation

Author keywords

Heteroclinic solutions; Non monotone positive travelling fronts; Time delayed reaction diffusion equation

Indexed keywords


EID: 58349107024     PISSN: 00220396     EISSN: 10902732     Source Type: Journal    
DOI: 10.1016/j.jde.2008.10.023     Document Type: Article
Times cited : (30)

References (35)
  • 1
    • 49749103184 scopus 로고    scopus 로고
    • Uniqueness of fast travelling fronts in a single species reaction-diffusion equation with delay
    • Aguerrea M., Trofimchuk S., and Valenzuela G. Uniqueness of fast travelling fronts in a single species reaction-diffusion equation with delay. Proc. R. Soc. A 464 (2008) 2591-2608
    • (2008) Proc. R. Soc. A , vol.464 , pp. 2591-2608
    • Aguerrea, M.1    Trofimchuk, S.2    Valenzuela, G.3
  • 2
    • 0344578958 scopus 로고    scopus 로고
    • Monotone travelling fronts in an age-structured reaction-diffusion model of a single species
    • Al-Omari J., and Gourley S.A. Monotone travelling fronts in an age-structured reaction-diffusion model of a single species. J. Math. Biol. 45 (2002) 294-312
    • (2002) J. Math. Biol. , vol.45 , pp. 294-312
    • Al-Omari, J.1    Gourley, S.A.2
  • 4
    • 0025545718 scopus 로고
    • Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model
    • Britton N.F. Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math. 50 (1990) 1663-1688
    • (1990) SIAM J. Appl. Math. , vol.50 , pp. 1663-1688
    • Britton, N.F.1
  • 5
    • 0001944424 scopus 로고
    • Run for your life, a note on the asymptotic speed of propagation of an epidemic
    • Diekmann O. Run for your life, a note on the asymptotic speed of propagation of an epidemic. J. Differential Equations 33 (1979) 58-73
    • (1979) J. Differential Equations , vol.33 , pp. 58-73
    • Diekmann, O.1
  • 6
    • 33748203296 scopus 로고    scopus 로고
    • Globally attracting fixed points in higher order discrete population models
    • El-Morshedy H.A., and Liz E. Globally attracting fixed points in higher order discrete population models. J. Math. Biol. 53 (2006) 365-384
    • (2006) J. Math. Biol. , vol.53 , pp. 365-384
    • El-Morshedy, H.A.1    Liz, E.2
  • 7
    • 33745920917 scopus 로고    scopus 로고
    • Traveling waves for delayed reaction-diffusion equations with non-local response
    • Faria T., Huang W., and Wu J. Traveling waves for delayed reaction-diffusion equations with non-local response. Proc. R. Soc. A 462 (2006) 229-261
    • (2006) Proc. R. Soc. A , vol.462 , pp. 229-261
    • Faria, T.1    Huang, W.2    Wu, J.3
  • 8
    • 33745891805 scopus 로고    scopus 로고
    • Non-monotone travelling waves in a single species reaction-diffusion equation with delay
    • Faria T., and Trofimchuk S. Non-monotone travelling waves in a single species reaction-diffusion equation with delay. J. Differential Equations 228 (2006) 357-376
    • (2006) J. Differential Equations , vol.228 , pp. 357-376
    • Faria, T.1    Trofimchuk, S.2
  • 10
    • 1542616886 scopus 로고    scopus 로고
    • Wavefronts and global stability in time-delayed population model with stage structure
    • Gourley S.A., and Kuang Y. Wavefronts and global stability in time-delayed population model with stage structure. Proc. R. Soc. A 459 (2003) 1563-1579
    • (2003) Proc. R. Soc. A , vol.459 , pp. 1563-1579
    • Gourley, S.A.1    Kuang, Y.2
  • 11
    • 19944407018 scopus 로고    scopus 로고
    • Extinction and wavefront propagation in a reaction-diffusion model of a structured population with distributed maturation delay
    • Gourley S.A., and So J.W.-H. Extinction and wavefront propagation in a reaction-diffusion model of a structured population with distributed maturation delay. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 527-548
    • (2003) Proc. Roy. Soc. Edinburgh Sect. A , vol.133 , pp. 527-548
    • Gourley, S.A.1    So, J.W.-H.2
  • 12
    • 33745885794 scopus 로고    scopus 로고
    • Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics
    • Gourley S.A., So J., and Wu J. Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics. J. Math. Sci. 124 (2004) 5119-5153
    • (2004) J. Math. Sci. , vol.124 , pp. 5119-5153
    • Gourley, S.A.1    So, J.2    Wu, J.3
  • 13
    • 58349090703 scopus 로고    scopus 로고
    • H.J. Hupkes, S.M. Verduyn Lunel, Analysis of Newton's method to compute travelling wave solutions to lattice differential equations, Technical Report 2003-09, Mathematical Institute Leiden
    • H.J. Hupkes, S.M. Verduyn Lunel, Analysis of Newton's method to compute travelling wave solutions to lattice differential equations, Technical Report 2003-09, Mathematical Institute Leiden
  • 14
    • 24344501229 scopus 로고    scopus 로고
    • Analysis of Newton's method to compute travelling waves in discrete media
    • Hupkes H.J., and Verduyn Lunel S.M. Analysis of Newton's method to compute travelling waves in discrete media. J. Dynam. Differential Equations 17 (2005) 523-572
    • (2005) J. Dynam. Differential Equations , vol.17 , pp. 523-572
    • Hupkes, H.J.1    Verduyn Lunel, S.M.2
  • 15
    • 0034656514 scopus 로고    scopus 로고
    • Nonoscillation for functional differential equations of mixed type
    • Krisztin T. Nonoscillation for functional differential equations of mixed type. J. Math. Anal. Appl. 245 (2000) 326-345
    • (2000) J. Math. Anal. Appl. , vol.245 , pp. 326-345
    • Krisztin, T.1
  • 16
    • 84867942512 scopus 로고    scopus 로고
    • On the diffusive Nicholson's blowflies equation with nonlocal delay
    • Li W.T., Ruan S., and Wang Z.C. On the diffusive Nicholson's blowflies equation with nonlocal delay. J. Nonlinear Sci. 17 (2007) 505-525
    • (2007) J. Nonlinear Sci. , vol.17 , pp. 505-525
    • Li, W.T.1    Ruan, S.2    Wang, Z.C.3
  • 17
    • 84867929521 scopus 로고    scopus 로고
    • Travelling waves and numerical approximations in a reaction-advection-diffusion equation with non-local delayed effects
    • Liang D., and Wu J. Travelling waves and numerical approximations in a reaction-advection-diffusion equation with non-local delayed effects. J. Nonlinear Sci. 13 (2003) 289-310
    • (2003) J. Nonlinear Sci. , vol.13 , pp. 289-310
    • Liang, D.1    Wu, J.2
  • 18
    • 2442502476 scopus 로고    scopus 로고
    • A global stability criterion for scalar functional differential equations
    • Liz E., Tkachenko V., and Trofimchuk S. A global stability criterion for scalar functional differential equations. SIAM J. Math. Anal. 35 (2003) 596-622
    • (2003) SIAM J. Math. Anal. , vol.35 , pp. 596-622
    • Liz, E.1    Tkachenko, V.2    Trofimchuk, S.3
  • 19
    • 30144432115 scopus 로고    scopus 로고
    • Global stability in discrete population models with delayed-density dependence
    • Liz E., Tkachenko V., and Trofimchuk S. Global stability in discrete population models with delayed-density dependence. Math. Biosci. 199 (2006) 26-37
    • (2006) Math. Biosci. , vol.199 , pp. 26-37
    • Liz, E.1    Tkachenko, V.2    Trofimchuk, S.3
  • 20
    • 0035836903 scopus 로고    scopus 로고
    • Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem
    • Ma S. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differential Equations 171 (2001) 294-314
    • (2001) J. Differential Equations , vol.171 , pp. 294-314
    • Ma, S.1
  • 21
    • 34247862261 scopus 로고    scopus 로고
    • Traveling waves for non-local delayed diffusion equations via auxiliary equations
    • Ma S. Traveling waves for non-local delayed diffusion equations via auxiliary equations. J. Differential Equations 237 (2007) 259-277
    • (2007) J. Differential Equations , vol.237 , pp. 259-277
    • Ma, S.1
  • 22
    • 0001935025 scopus 로고    scopus 로고
    • The Fredholm alternative for functional differential equations of mixed type
    • Mallet-Paret J. The Fredholm alternative for functional differential equations of mixed type. J. Dynam. Differential Equations 11 (1999) 1-48
    • (1999) J. Dynam. Differential Equations , vol.11 , pp. 1-48
    • Mallet-Paret, J.1
  • 23
    • 53149083400 scopus 로고    scopus 로고
    • The global structure of traveling waves in spatially discrete dynamical systems
    • Mallet-Paret J. The global structure of traveling waves in spatially discrete dynamical systems. J. Dynam. Differential Equations 11 (1999) 49-127
    • (1999) J. Dynam. Differential Equations , vol.11 , pp. 49-127
    • Mallet-Paret, J.1
  • 24
    • 45849110920 scopus 로고    scopus 로고
    • Stability of strong traveling waves for a non-local time-delayed reaction-diffusion equation
    • Mei M., and So J.W.-H. Stability of strong traveling waves for a non-local time-delayed reaction-diffusion equation. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 551-568
    • (2008) Proc. Roy. Soc. Edinburgh Sect. A , vol.138 , pp. 551-568
    • Mei, M.1    So, J.W.-H.2
  • 25
    • 33747046395 scopus 로고    scopus 로고
    • Asymptotic behavior and oscillation of functional differential equations
    • Pituk M. Asymptotic behavior and oscillation of functional differential equations. J. Math. Anal. Appl. 322 (2006) 1140-1158
    • (2006) J. Math. Anal. Appl. , vol.322 , pp. 1140-1158
    • Pituk, M.1
  • 26
    • 0001584326 scopus 로고
    • Asymptotic behavior and traveling wave solutions for parabolic functional differential equations
    • Schaaf K. Asymptotic behavior and traveling wave solutions for parabolic functional differential equations. Trans. Amer. Math. Soc. 302 (1987) 587-615
    • (1987) Trans. Amer. Math. Soc. , vol.302 , pp. 587-615
    • Schaaf, K.1
  • 27
    • 32044440101 scopus 로고    scopus 로고
    • A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains
    • So J., Wu J., and Zou X. A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains. Proc. R. Soc. A 457 (2001) 1841-1853
    • (2001) Proc. R. Soc. A , vol.457 , pp. 1841-1853
    • So, J.1    Wu, J.2    Zou, X.3
  • 29
    • 0008260279 scopus 로고
    • Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations
    • Thieme H.R. Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306 (1979) 94-121
    • (1979) J. Reine Angew. Math. , vol.306 , pp. 94-121
    • Thieme, H.R.1
  • 30
    • 0345116416 scopus 로고    scopus 로고
    • Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models
    • Thieme H.R., and Zhao X.-Q. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differential Equations 195 (2003) 430-470
    • (2003) J. Differential Equations , vol.195 , pp. 430-470
    • Thieme, H.R.1    Zhao, X.-Q.2
  • 31
    • 49549088343 scopus 로고    scopus 로고
    • Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay
    • Trofimchuk E., Tkachenko V., and Trofimchuk S. Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay. J. Differential Equations 245 (2008) 2307-2332
    • (2008) J. Differential Equations , vol.245 , pp. 2307-2332
    • Trofimchuk, E.1    Tkachenko, V.2    Trofimchuk, S.3
  • 32
    • 41649111711 scopus 로고    scopus 로고
    • Admissible wavefront speeds for a single species reaction-diffusion equation with delay
    • Trofimchuk E., and Trofimchuk S. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete Contin. Dyn. Syst. Ser. A 20 (2008) 407-423
    • (2008) Discrete Contin. Dyn. Syst. Ser. A , vol.20 , pp. 407-423
    • Trofimchuk, E.1    Trofimchuk, S.2
  • 33
    • 32044459052 scopus 로고    scopus 로고
    • Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays
    • Wang Z.-C., Li W.T., and Ruan S. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays. J. Differential Equations 222 (2006) 185-232
    • (2006) J. Differential Equations , vol.222 , pp. 185-232
    • Wang, Z.-C.1    Li, W.T.2    Ruan, S.3
  • 34
    • 47149104525 scopus 로고    scopus 로고
    • Traveling fronts in monostable equations with nonlocal delayed effects
    • Wang Z.-C., Li W.T., and Ruan S. Traveling fronts in monostable equations with nonlocal delayed effects. J. Dynam. Differential Equations 20 (2008) 573-607
    • (2008) J. Dynam. Differential Equations , vol.20 , pp. 573-607
    • Wang, Z.-C.1    Li, W.T.2    Ruan, S.3
  • 35
    • 0343717093 scopus 로고    scopus 로고
    • Traveling wave fronts of reaction-diffusion systems with delay
    • Wu J., and Zou X. Traveling wave fronts of reaction-diffusion systems with delay. J. Dynam. Differential Equations 13 (2001) 651-687
    • (2001) J. Dynam. Differential Equations , vol.13 , pp. 651-687
    • Wu, J.1    Zou, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.