메뉴 건너뛰기




Volumn 13, Issue 3, 2001, Pages 651-687

Traveling wave fronts of reaction-diffusion systems with delay

Author keywords

Monotone iteration; Nonquasimonotonicity; Nonstandard ordering; Quasimonotonicity; Reaction diffusion systems with delay; Traveling wave fronts

Indexed keywords


EID: 0343717093     PISSN: 10407294     EISSN: 15729222     Source Type: Journal    
DOI: 10.1023/a:1016690424892     Document Type: Article
Times cited : (530)

References (56)
  • 1
    • 0040929733 scopus 로고
    • Comparison, results of reaction-diffusion equations with delay in abstract cones
    • S. Ahmad and A. S. Vatsala, Comparison, results of reaction-diffusion equations with delay in abstract cones. Rend. Sem. Math. Univ. Padova 65 (1981), 19-34
    • (1981) Rend. Sem. Math. Univ. Padova , vol.65 , pp. 19-34
    • Ahmad, S.1    Vatsala, A.S.2
  • 2
    • 0002488752 scopus 로고
    • Nonlinear diffusion in population genetics, combustion and nerve preparation
    • (J. Goldstein, ed.), Lect. Notes Math., Springer-Verlag, New York
    • D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve preparation. In Partial Differential Equations and Related Topics (J. Goldstein, ed.), Lect. Notes Math., Vol. 446, Springer-Verlag, New York. 1975, pp. 5-49.
    • (1975) Partial Differential Equations and Related Topics , vol.446 , pp. 5-49
    • Aronson, D.G.1    Weinberger, H.F.2
  • 3
    • 0001274382 scopus 로고
    • Système d'equations differentielle d'oscillations nonlineaires
    • I. Barbalat, Système d'equations differentielle d'oscillations nonlineaires. Rev. Rounmaie Math. Pures Appl. 4 (1959), 267-270.
    • (1959) Rev. Rounmaie Math. Pures Appl. , vol.4 , pp. 267-270
    • Barbalat, I.1
  • 4
    • 0000160966 scopus 로고
    • Aperiodic reaction and its mechanism
    • B. P. Belousov, Aperiodic reaction and its mechanism. Ref Radiat. Med. Medgiz (1959), 45.
    • (1959) Ref Radiat. Med. Medgiz , pp. 45
    • Belousov, B.P.1
  • 6
    • 84972029483 scopus 로고
    • On a nonlinear integral equation arising in mathematical epidemiology
    • (Proc. Third Scheveningen Conf, Scheveningen, 1977), North-Holland Math. Stud.
    • O. Diekmann, On a nonlinear integral equation arising in mathematical epidemiology. In Differential Equations and Applications (Proc. Third Scheveningen Conf, Scheveningen, 1977), North-Holland Math. Stud., 31, North-Holland, Amsterdam-New York, 1978a, pp. 133-140.
    • (1978) Differential Equations and Applications , vol.31 , pp. 133-140
    • Diekmann, O.1
  • 7
    • 0018184969 scopus 로고
    • Thresholds and travelling waves for the geographical spread of infection
    • O. Diekmann, Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 6 (1978b), 109-130.
    • (1978) J. Math. Biol. , vol.6 , pp. 109-130
    • Diekmann, O.1
  • 8
    • 0001944424 scopus 로고
    • Run for your life. A note on the asymptotic speed of propagation of an epidemic
    • O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Diff. Eqs. 33 (1978c), 58-73.
    • (1978) J. Diff. Eqs. , vol.33 , pp. 58-73
    • Diekmann, O.1
  • 9
    • 52549112459 scopus 로고
    • Integral equations and population dynamic
    • (Math. Centre, Amsterdam, 1978-1979), MC Syllabus, Math. Centrum, Amsterdam
    • O. Diekmann, Integral equations and population dynamic. In Colloquium Numerical Treatment of Integral Equations (Math. Centre, Amsterdam, 1978-1979), MC Syllabus, 41, Math. Centrum, Amsterdam, 1979, pp. 115-149.
    • (1979) Colloquium Numerical Treatment of Integral Equations , vol.41 , pp. 115-149
    • Diekmann, O.1
  • 10
    • 0000360728 scopus 로고
    • On the bounded solutions of a nonlinear convolution equation
    • O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation. Nonlin. Anal. 2 (1978), 721-737.
    • (1978) Nonlin. Anal. , vol.2 , pp. 721-737
    • Diekmann, O.1    Kaper, H.G.2
  • 12
    • 0000268135 scopus 로고
    • The wave of advance of advantageous gene
    • R. A. Fisher, The wave of advance of advantageous gene. Ann. Eugen. 7 (1937), 355-369.
    • (1937) Ann. Eugen. , vol.7 , pp. 355-369
    • Fisher, R.A.1
  • 13
    • 0002239656 scopus 로고
    • Review on Traveling Wave Solutions of Parabolic Systems
    • by A. I. Volpert, V. A. Volpert and V. A. Volpert
    • R. Gardner, Review on Traveling Wave Solutions of Parabolic Systems by A. I. Volpert, V. A. Volpert and V. A. Volpert. Bull. Am. Math. Soc. 32 (1995), 446-452.
    • (1995) Bull. Am. Math. Soc. , vol.32 , pp. 446-452
    • Gardner, R.1
  • 15
    • 52549126545 scopus 로고
    • Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior
    • W. W. Hirsch, H. Hamisch, and J.-P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior. Comm. Pure App. Math. 38 (1948), 221-246.
    • (1948) Comm. Pure App. Math. , vol.38 , pp. 221-246
    • Hirsch, W.W.1    Hamisch, H.2    Gabriel, J.-P.3
  • 16
    • 33645084765 scopus 로고
    • Circular causal systems in ecology
    • G. E. Hutchinson, Circular causal systems in ecology, Ann. N. Y. Acad. Sci. 50 (1948), 221-246.
    • (1948) Ann. N. Y. Acad. Sci. , vol.50 , pp. 221-246
    • Hutchinson, G.E.1
  • 17
    • 0007063034 scopus 로고
    • Existence of a traveling-wave solution of the Belousov-Zhabotinskii system
    • Ya. I. Kanel, Existence of a traveling-wave solution of the Belousov-Zhabotinskii system. Diiferetsial'nye Uravneniya 26 (1990), 652-660.
    • (1990) Diiferetsial'nye Uravneniya , vol.26 , pp. 652-660
    • Kanel, Y.I.1
  • 18
    • 0002434002 scopus 로고
    • Existence of traveling-wave type solutions for the Belousov-Zhabotinskii system equations
    • A. Y. Kapel, Existence of traveling-wave type solutions for the Belousov-Zhabotinskii system equations. Sibirskii, Math. Zh. 32 (1991), 47-59.
    • (1991) Sibirskii, Math. Zh. , vol.32 , pp. 47-59
    • Kapel, A.Y.1
  • 19
    • 0000177992 scopus 로고
    • Asymptotic behavior of one-parameter semigroups of positive operators
    • W. Kerscher and R. Nagel, Asymptotic behavior of one-parameter semigroups of positive operators. Acta Appl. Math. 2 (1984), 297-309.
    • (1984) Acta Appl. Math. , vol.2 , pp. 297-309
    • Kerscher, W.1    Nagel, R.2
  • 20
    • 84972539437 scopus 로고
    • On the semilinear heat equation with time-lag
    • K. Kobayshi, On the semilinear heat equation with time-lag. Hiroshima Math. J. 7 (1977), 459-472.
    • (1977) Hiroshima Math. J. , vol.7 , pp. 459-472
    • Kobayshi, K.1
  • 21
    • 0002722044 scopus 로고
    • Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem
    • A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem. Byul. Most Cos. Univ. Ser. A Mat. Mekh. 1 (1937), 1-26.
    • (1937) Byul. Most Cos. Univ. Ser. A Mat. Mekh. , vol.1 , pp. 1-26
    • Kolmogorov, A.N.1    Petrovskii, I.G.2    Piskunov, N.S.3
  • 23
    • 0040335711 scopus 로고
    • Order preserving evolution operators of functional differential equations
    • K. Kunish and W. Schappacher, Order preserving evolution operators of functional differential equations. Boll. Unione Mate. Ital. 16B (1979), 480-500.
    • (1979) Boll. Unione Mate. Ital. , vol.16 B , pp. 480-500
    • Kunish, K.1    Schappacher, W.2
  • 26
    • 0039151390 scopus 로고
    • Existence of solutions of delay differential equations on closed subsets of a Banach space
    • S. Leela and V. Moauro, Existence of solutions of delay differential equations on closed subsets of a Banach space. Nonlin. Anal. TMA 2 (1978), 47-58.
    • (1978) Nonlin. Anal. TMA , vol.2 , pp. 47-58
    • Leela, S.1    Moauro, V.2
  • 27
    • 0024639645 scopus 로고
    • Biological growth and spread modeled by systems of recursion. I. Mathematical theory
    • R. Lui, Biological growth and spread modeled by systems of recursion. I. Mathematical theory. Math. Biosci. 93 (1989a), 269-295.
    • (1989) Math. Biosci. , vol.93 , pp. 269-295
    • Lui, R.1
  • 28
    • 0024639610 scopus 로고
    • Biological growth and: Spread modeled by systems of recursion. II. Biological theory
    • R. Lui, Biological growth and: spread modeled by systems of recursion. II. Biological theory. Math. Biosci. 93 (1989b), 297-312.
    • (1989) Math. Biosci. , vol.93 , pp. 297-312
    • Lui, R.1
  • 29
    • 84966246501 scopus 로고
    • Abstract functional differential equations and reaction-diffusion systems
    • R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321 (1990), 1-44.
    • (1990) Trans. Am. Math. Soc. , vol.321 , pp. 1-44
    • Martin, R.H.1    Smith, H.L.2
  • 30
    • 0001989035 scopus 로고
    • Reaction-diffusion systems with time delay: Monotonicity, invariance, comparison and convergence
    • R. H. Martin and H. L. Smith, Reaction-diffusion systems with time delay: Monotonicity, invariance, comparison and convergence. J. Reine Angew. Math. 414 (1991), 1-35.
    • (1991) J. Reine Angew. Math. , vol.414 , pp. 1-35
    • Martin, R.H.1    Smith, H.L.2
  • 31
    • 0041651190 scopus 로고
    • On a model for temporal oscillations in the Belousov-Zhabotinskii reaction
    • J. D. Murray, On a model for temporal oscillations in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 61 (1974), 3611-3613.
    • (1974) J. Chem. Phys. , vol.61 , pp. 3611-3613
    • Murray, J.D.1
  • 32
    • 0017158430 scopus 로고
    • On traveling wave solutions in a model for Belousov-Zhabotinskii reaction
    • J. D. Murray, On traveling wave solutions in a model for Belousov-Zhabotinskii reaction. J. Theor. Biol. 56 (1976), 329-353.
    • (1976) J. Theor. Biol. , vol.56 , pp. 329-353
    • Murray, J.D.1
  • 34
    • 0020515976 scopus 로고
    • Wave solutions for the deterministic nonreducible n-type epidemic
    • J. Radcliffe and L. Rass, Wave solutions for the deterministic nonreducible n-type epidemic. J. Math. Biol. 17 (1983a), 45-66.
    • (1983) J. Math. Biol. , vol.17 , pp. 45-66
    • Radcliffe, J.1    Rass, L.2
  • 35
    • 0021251991 scopus 로고
    • The uniqueness of wave solutions for the deterministic non reducible n-type epidemic
    • J. Radcliffe and L. Rass, The uniqueness of wave solutions for the deterministic non reducible n-type epidemic. J. Math. Biol. 19 (1983b), 303-308.
    • (1983) J. Math. Biol. , vol.19 , pp. 303-308
    • Radcliffe, J.1    Rass, L.2
  • 36
    • 0022592111 scopus 로고
    • The asymptotic speed of propagation of the deterministic non-reducible n-type epidemic
    • J. Radcliffe and L. Rass, The asymptotic speed of propagation of the deterministic non-reducible n-type epidemic. J. Math. Biol. 23 (1986), 341-359.
    • (1986) J. Math. Biol. , vol.23 , pp. 341-359
    • Radcliffe, J.1    Rass, L.2
  • 37
    • 0001584326 scopus 로고
    • Asymptotic behavior and traveling wave solutions for parabolic functional differential equations
    • K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations. Trans.-Am. Math. Soc. 302 (1987), 587-615.
    • (1987) Trans.-Am. Math. Soc. , vol.302 , pp. 587-615
    • Schaaf, K.1
  • 38
    • 0001243427 scopus 로고
    • Monotone semiflows generated by functional differential equations
    • H. L. Smith, Monotone semiflows generated by functional differential equations. J. Diff. Eqs. 66 (1987), 420-442.
    • (1987) J. Diff. Eqs. , vol.66 , pp. 420-442
    • Smith, H.L.1
  • 40
    • 0025468667 scopus 로고
    • Monotone semiflows in scalar non-quasimonotone functional differential equations
    • H. L. Smith and H. R. Thieme, Monotone semiflows in scalar non-quasimonotone functional differential equations. J. Math. Anal. Appl. 150 (1990), 289-306.
    • (1990) J. Math. Anal. Appl. , vol.150 , pp. 289-306
    • Smith, H.L.1    Thieme, H.R.2
  • 41
    • 0001676484 scopus 로고
    • Strongly order preserving semiflows generated by functional differential equations
    • H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional differential equations. Diff. Esq. 93 (1991), 322-363.
    • (1991) Diff. Esq. , vol.93 , pp. 322-363
    • Smith, H.L.1    Thieme, H.R.2
  • 42
    • 0001711224 scopus 로고
    • Global attractivity for a population model with time delay
    • J. So and J. Yu, Global attractivity for a population model with time delay. Proc. Am. Math. Soc. 125 (1995), 2687-2694.
    • (1995) Proc. Am. Math. Soc. , vol.125 , pp. 2687-2694
    • So, J.1    Yu, J.2
  • 43
    • 84974173314 scopus 로고
    • On the stability for a population growth equation with time delay
    • J. Sugie, On the stability for a population growth equation with time delay. Proc. Roy. Soc. Edinburgh A 120 (1992), 179-184.
    • (1992) Proc. Roy. Soc. Edinburgh A , vol.120 , pp. 179-184
    • Sugie, J.1
  • 44
    • 0008260279 scopus 로고
    • Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations
    • H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306 (1979a), 94-21.
    • (1979) J. Reine Angew. Math. , vol.306 , pp. 94-121
    • Thieme, H.R.1
  • 45
    • 0018570848 scopus 로고
    • Density-dependent regulation of spatially distributed populations and their asymptotic speed of spreed
    • H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spreed. J. Math. Biol. 8 (1979b), 173-187.
    • (1979) J. Math. Biol. , vol.8 , pp. 173-187
    • Thieme, H.R.1
  • 46
    • 0007124670 scopus 로고
    • The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii reaction
    • W. C. Troy, The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii reaction. J. Diff. Eqs. 36 (1980), 89-98.
    • (1980) J. Diff. Eqs. , vol.36 , pp. 89-98
    • Troy, W.C.1
  • 48
    • 0345009974 scopus 로고
    • Some deterministic models for the spread of genetic and other alterations
    • (W. Jaeger, H. Rost, and P. Tautu, eds.), Lectures in Biomathematics
    • H. F. Weinberger, Some deterministic models for the spread of genetic and other alterations. In Biological Growth and Spreed (W. Jaeger, H. Rost, and P. Tautu, eds.), Lectures in Biomathematics, 38, Springer-Verlag, New York. 1981, pp. 320-333.
    • (1981) Biological Growth and Spreed , vol.38 , pp. 320-333
    • Weinberger, H.F.1
  • 49
    • 0001047828 scopus 로고
    • Long-time behavior of a class of biological models
    • H. F. Weinberger, Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13 (1982), 353-396.
    • (1982) SIAM J. Math. Anal. , vol.13 , pp. 353-396
    • Weinberger, H.F.1
  • 50
    • 84941442792 scopus 로고
    • A non-linear difference-differential equation
    • E. M. Wright, A non-linear difference-differential equation. J. Reine Angew. Math. 194 (1955), 66-87.
    • (1955) J. Reine Angew. Math. , vol.194 , pp. 66-87
    • Wright, E.M.1
  • 52
    • 38249033033 scopus 로고
    • Traveling wave front solutions of Noyes-Field System for Belousov-Zhabotinskii reaction
    • Q. Ye and M. Wang, Traveling wave front solutions of Noyes-Field System for Belousov-Zhabotinskii reaction. Nonlin. Anal. TMA 11 (1987), 1289-1302.
    • (1987) Nonlin. Anal. TMA , vol.11 , pp. 1289-1302
    • Ye, Q.1    Wang, M.2
  • 53
    • 36949058437 scopus 로고
    • Concentration wave propagation in two dimensional liquid phase self oscillation system
    • A. N. Zaikin and A. M. Zhabotinskii, Concentration wave propagation in two dimensional liquid phase self oscillation system. Nature 225 (1970), 535-537.
    • (1970) Nature , vol.225 , pp. 535-537
    • Zaikin, A.N.1    Zhabotinskii, A.M.2
  • 55
    • 0001621697 scopus 로고
    • Stabilization of unstable states and oscillatory phenomena in an illuminated thermochemical system: Theory and experiment
    • E. C. Zimmermann, M. Schell, and J. Ross, Stabilization of unstable states and oscillatory phenomena in an illuminated thermochemical system: Theory and experiment. J. Chem. Phys. 81 (1984), 1327-1336.
    • (1984) J. Chem. Phys. , vol.81 , pp. 1327-1336
    • Zimmermann, E.C.1    Schell, M.2    Ross, J.3
  • 56
    • 21944443660 scopus 로고    scopus 로고
    • Existence of traveling wave fronts in delayed reaction-diffusion systems via monotone iteration method
    • X. Zou and J. Wu, Existence of traveling wave fronts in delayed reaction-diffusion systems via monotone iteration method. Proc. Am. Math. Soc. 125 (1997), 2589-2598.
    • (1997) Proc. Am. Math. Soc. , vol.125 , pp. 2589-2598
    • Zou, X.1    Wu, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.