-
1
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
Journal of the Royal Statistical Society, Series B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
2
-
-
0032131292
-
Atomic decomposition by basis pursuit
-
S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Computing, vol. 20, no. 1, pp. 33-61, 1998.
-
(1998)
SIAM J. Sci. Computing
, vol.20
, Issue.1
, pp. 33-61
-
-
Chen, S.1
Donoho, D.L.2
Saunders, M.A.3
-
3
-
-
0035504028
-
Uncertainty principles and ideal atomic decomposition
-
D. Donoho and X. Huo, "Uncertainty principles and ideal atomic decomposition," IEEE Trans. Info Theory, vol. 47, no. 7, pp. 2845-2862, 2001.
-
(2001)
IEEE Trans. Info Theory
, vol.47
, Issue.7
, pp. 2845-2862
-
-
Donoho, D.1
Huo, X.2
-
5
-
-
0034215549
-
A new approach to variable selection in least squares problems
-
Online, Available
-
M. R. Osborne, B. Presnell, and B. A. Turlach, "A new approach to variable selection in least squares problems," IMA Journal of Numerical Analysis, vol. 20, no. 3, pp. 389-403, 2000. [Online]. Available: citeseer.ist.psu.edu/article/osborne00new.html
-
(2000)
IMA Journal of Numerical Analysis
, vol.20
, Issue.3
, pp. 389-403
-
-
Osborne, M.R.1
Presnell, B.2
Turlach, B.A.3
-
6
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," Annals of Statistics, vol. 32, no. 2, pp. 407-499, 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
7
-
-
0034287156
-
Asymptotics for lasso-type estimators
-
K. Knight and W. J. Fu, "Asymptotics for lasso-type estimators," Annals of Statistics, vol. 28, pp. 1356-1378, 2000.
-
(2000)
Annals of Statistics
, vol.28
, pp. 1356-1378
-
-
Knight, K.1
Fu, W.J.2
-
8
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
N. Meinshausen and P. Bühlmann, "High-dimensional graphs and variable selection with the Lasso," Annals of Statistics, vol. 34, pp. 1436-1462, 2006.
-
(2006)
Annals of Statistics
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
10
-
-
33845263263
-
On model selection consistency of Lasso
-
P. Zhao and B. Yu, "On model selection consistency of Lasso," Journal of Machine Learning Research, vol. 7, pp. 2541-2567, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2541-2567
-
-
Zhao, P.1
Yu, B.2
-
11
-
-
34548275795
-
The Dantzig selector: Statistical estimation when p is much larger than n
-
E. Candes and T. Tao, "The Dantzig selector: Statistical estimation when p is much larger than n," Annals of Statistics, vol. 35, no. 6, pp. 2313-2351, 2007.
-
(2007)
Annals of Statistics
, vol.35
, Issue.6
, pp. 2313-2351
-
-
Candes, E.1
Tao, T.2
-
12
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
M. Yuan and Y. Lin, "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society B, vol. 1, no. 68, p. 4967, 2006.
-
(2006)
Journal of the Royal Statistical Society B
, vol.1
, Issue.68
, pp. 4967
-
-
Yuan, M.1
Lin, Y.2
-
13
-
-
34447335946
-
-
Statistics Department, University of California, Berkeley, Tech. Rep. 703
-
P. Zhao, G. Rocha, and B. Yu, "Grouped and hierarchical model selection through composite absolute penalties," Statistics Department, University of California, Berkeley, Tech. Rep. 703, 2007.
-
(2007)
Grouped and hierarchical model selection through composite absolute penalties
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
14
-
-
64549124479
-
-
Department of Statistics, University of California, Berkeley, Tech. Rep. 743
-
G. Obozinski, B. Taskar, and M. Jordan, "Joint covariate selection for grouped classification," Department of Statistics, University of California, Berkeley, Tech. Rep. 743, 2007.
-
(2007)
Joint covariate selection for grouped classification
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.3
-
15
-
-
84864063089
-
Multi-task feature learning
-
Cambridge, MA: MIT Press
-
A. Argyriou, T. Evgeniou, and M. Pontil, "Multi-task feature learning," in Advances in Neural Information Processing Systems, 18. Cambridge, MA: MIT Press, 2006.
-
(2006)
Advances in Neural Information Processing Systems, 18
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
16
-
-
23844431650
-
Simultaneous variable selection
-
B. Turlach, W. Venables, and S. Wright, "Simultaneous variable selection," Technometrics, vol. 27, pp. 349-363, 2005.
-
(2005)
Technometrics
, vol.27
, pp. 349-363
-
-
Turlach, B.1
Venables, W.2
Wright, S.3
-
17
-
-
47749133494
-
Variable selection for the multi-category SVM via adaptive sup-norm regularization
-
H. Zhang, H. Liu, Y Wu, and J. Zhu, "Variable selection for the multi-category SVM via adaptive sup-norm regularization," Electronic Journal of Statistics, vol. 2, pp. 1149-1167, 2008.
-
(2008)
Electronic Journal of Statistics
, vol.2
, pp. 1149-1167
-
-
Zhang, H.1
Liu, H.2
Wu, Y.3
Zhu, J.4
-
18
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
Morgan Kaufmann
-
F. Bach, G. Lanckriet, and M. I. Jordan, "Multiple kernel learning, conic duality, and the SMO algorithm," in Proc. Int. Conf. Machine Learning (ICML). Morgan Kaufmann, 2004.
-
(2004)
Proc. Int. Conf. Machine Learning (ICML)
-
-
Bach, F.1
Lanckriet, G.2
Jordan, M.I.3
-
19
-
-
33645712308
-
Just relax: Convex programming methods for identifying sparse signals in noise
-
March
-
J. A. Tropp, "Just relax: Convex programming methods for identifying sparse signals in noise," IEEE Trans. Info Theory, vol. 52, no. 3, pp. 1030-1051, March 2006.
-
(2006)
IEEE Trans. Info Theory
, vol.52
, Issue.3
, pp. 1030-1051
-
-
Tropp, J.A.1
-
20
-
-
85030144707
-
-
Carnegie Mellon University, Tech. Rep. arXiv:0711.4555v2
-
P. Ravikumar, H. Liu, J. Lafferty, and L. Wasserman, "SpAM: sparse additive models," Carnegie Mellon University, Tech. Rep. arXiv:0711.4555v2, 2008.
-
(2008)
SpAM: Sparse additive models
-
-
Ravikumar, P.1
Liu, H.2
Lafferty, J.3
Wasserman, L.4
-
21
-
-
37849035696
-
The group lasso for logistic regression
-
L. Meier, S. van de Geer, and P. Bühlmann, "The group lasso for logistic regression," Journal of the Royal Statistical Society, Series B, vol. 70, pp. 53-71, 2008.
-
(2008)
Journal of the Royal Statistical Society, Series B
, vol.70
, pp. 53-71
-
-
Meier, L.1
van de Geer, S.2
Bühlmann, P.3
-
22
-
-
64549159496
-
-
INRIA, Département dTnformatique, Ecole Normale Supérieure, Tech. Rep
-
F. Bach, "Consistency of the group Lasso and multiple kernel learning," INRIA, Département dTnformatique, Ecole Normale Supérieure, Tech. Rep., 2008.
-
(2008)
Consistency of the group Lasso and multiple kernel learning
-
-
Bach, F.1
-
23
-
-
84869273708
-
-
2 regularized regression, Carnegie Mellon University, Tech. Rep. arXiv:0802.1517vl, 2008.
-
2 regularized regression," Carnegie Mellon University, Tech. Rep. arXiv:0802.1517vl, 2008.
-
-
-
-
24
-
-
64549103939
-
-
Department of Statistics, UC Berkeley, Tech. Rep, August
-
G. Obozinski, M. J. Wainwright, and M. I. Jordan, "Union support recovery in high-dimensional multivariate regression," Department of Statistics, UC Berkeley, Tech. Rep., August 2008.
-
(2008)
Union support recovery in high-dimensional multivariate regression
-
-
Obozinski, G.1
Wainwright, M.J.2
Jordan, M.I.3
-
26
-
-
51049110657
-
Lasso-type recovery of sparse representations for high-dimensional data
-
N. Meinshausen and B. Yu, "Lasso-type recovery of sparse representations for high-dimensional data," Annals of Statistics, 2008.
-
(2008)
Annals of Statistics
-
-
Meinshausen, N.1
Yu, B.2
|