-
1
-
-
67349239298
-
-
Arnold, P. L., Love, J. B., and Patel, D. Coord. Chem. Rev. 2009, 253, 1973-1978
-
(2009)
Coord. Chem. Rev.
, vol.253
, pp. 1973-1978
-
-
Arnold, P.L.1
Love, J.B.2
Patel, D.3
-
2
-
-
70349766042
-
-
See, for example
-
See, for example, Cantat, T., Graves, C. R., Scott, B. L., and Kiplinger, J. L. Angew. Chem., Int. Ed. 2009, 48, 3681-3684
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 3681-3684
-
-
Cantat, T.1
Graves, C.R.2
Scott, B.L.3
Kiplinger, J.L.4
-
5
-
-
36348937169
-
-
For example, a trinitrate complex, which is unknown in water
-
For example, a trinitrate complex, which is unknown in water: Servaes, K., Hennig, C., Billard, I., Gaillard, C., Binnemans, K., Gorller-Walrand, C., and Van Deun, R. Eur. J. Inorg. Chem. 2007, 5120-5126
-
(2007)
Eur. J. Inorg. Chem.
, pp. 5120-5126
-
-
Servaes, K.1
Hennig, C.2
Billard, I.3
Gaillard, C.4
Binnemans, K.5
Gorller-Walrand, C.6
Van Deun, R.7
-
6
-
-
43149094678
-
-
Hennig, C., Servaes, K., Nockemann, P., Van Hecke, K., Van Meervelt, L., Wouters, J., Fluyt, L., Gorller-Walrand, C., and Van Deun, R. Inorg. Chem. 2008, 47, 2987-2993
-
(2008)
Inorg. Chem.
, vol.47
, pp. 2987-2993
-
-
Hennig, C.1
Servaes, K.2
Nockemann, P.3
Van Hecke, K.4
Van Meervelt, L.5
Wouters, J.6
Fluyt, L.7
Gorller-Walrand, C.8
Van Deun, R.9
-
7
-
-
70350584860
-
-
Takao, K., Tsushima, S., Takao, S., Scheinost, A. C., Bernhard, G., Ikeda, Y., and Hennig, C. Inorg. Chem. 2009, 48, 9602-9604
-
(2009)
Inorg. Chem.
, vol.48
, pp. 9602-9604
-
-
Takao, K.1
Tsushima, S.2
Takao, S.3
Scheinost, A.C.4
Bernhard, G.5
Ikeda, Y.6
Hennig, C.7
-
8
-
-
34250358297
-
-
For some selected reviews, see
-
For some selected reviews, see: Denning, R. G. J. Phys. Chem. A 2007, 111, 4125-4143
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 4125-4143
-
-
Denning, R.G.1
-
9
-
-
33644804076
-
-
Vallet, V., Macak, P., Wahlgren, U., and Grenthe, I. Theor. Chem. Acc. 2006, 115, 145-160
-
(2006)
Theor. Chem. Acc.
, vol.115
, pp. 145-160
-
-
Vallet, V.1
Macak, P.2
Wahlgren, U.3
Grenthe, I.4
-
10
-
-
33746604609
-
-
Szabó, Z., Toraishi, T., Vallet, V., and Grenthe, I. Coord. Chem. Rev. 2006, 250, 784-815
-
(2006)
Coord. Chem. Rev.
, vol.250
, pp. 784-815
-
-
Szabó, Z.1
Toraishi, T.2
Vallet, V.3
Grenthe, I.4
-
11
-
-
42449087961
-
-
3 rd ed.;, Eds.; Springer: Dordrecht, The Netherlands
-
Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J. P., and Bursten, B. E. In The Chemistry of the Actinide and Transactinide Elements, 3 rd ed.; Morss, L. R., Edelstein, N. M., Fuger, J., and Katz, J. J., Eds.; Springer: Dordrecht, The Netherlands, 2006; Vol. 3, pp 1893 - 2012.
-
(2006)
The Chemistry of the Actinide and Transactinide Elements
, vol.3
, pp. 1893-2012
-
-
Kaltsoyannis, N.1
Hay, P.J.2
Li, J.3
Blaudeau, J.P.4
Bursten, B.E.5
Morss, L.R.6
Edelstein, N.M.7
Fuger, J.8
Katz, J.J.9
-
13
-
-
34250354784
-
-
See, for example
-
See, for example, Shamov, G. A., Schreckenbach, G., and Vo, T. N. Chem. - Eur. J. 2007, 13, 4932-4947
-
(2007)
Chem. - Eur. J.
, vol.13
, pp. 4932-4947
-
-
Shamov, G.A.1
Schreckenbach, G.2
Vo, T.N.3
-
15
-
-
25844459661
-
-
First CPMD studies of aqueous uranyl hydrate and nitrate
-
First CPMD studies of aqueous uranyl hydrate and nitrate: Bühl, M., Diss, R., and Wipff, G. J. Am. Chem. Soc. 2005, 127, 13506-13507
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 13506-13507
-
-
Bühl, M.1
Diss, R.2
Wipff, G.3
-
16
-
-
33646570580
-
-
Bühl, M., Kabrede, H., Diss, R., and Wipff, G. J. Am. Chem. Soc. 2006, 120, 6357-6368
-
(2006)
J. Am. Chem. Soc.
, vol.120
, pp. 6357-6368
-
-
Bühl, M.1
Kabrede, H.2
Diss, R.3
Wipff, G.4
-
20
-
-
41549120624
-
-
Nichols, P., Bylaska, E. J., Schenter, G. K., and de Jong, W. J. Chem. Phys. 2008, 128, 124507
-
(2008)
J. Chem. Phys.
, vol.128
, pp. 124507
-
-
Nichols, P.1
Bylaska, E.J.2
Schenter, G.K.3
De Jong, W.4
-
21
-
-
33751226298
-
-
Acidity constant of uranyl hydrate
-
Acidity constant of uranyl hydrate: Bühl, M. and Kabrede, H. ChemPhysChem 2006, 7, 2290-2293
-
(2006)
ChemPhysChem
, vol.7
, pp. 2290-2293
-
-
Bühl, M.1
Kabrede, H.2
-
22
-
-
35348925992
-
-
Binding energies of nitrate and halides
-
Binding energies of nitrate and halides: Bühl, M. and Golubnychiy, V. Inorg. Chem. 2007, 46, 8129-8131
-
(2007)
Inorg. Chem.
, vol.46
, pp. 8129-8131
-
-
Bühl, M.1
Golubnychiy, V.2
-
23
-
-
46849099598
-
-
Bühl, M., Sieffert, N., Golubnychiy, V., and Wipff, G. J. Phys. Chem. A 2008, 112, 2428-2436
-
(2008)
J. Phys. Chem. A
, vol.112
, pp. 2428-2436
-
-
Bühl, M.1
Sieffert, N.2
Golubnychiy, V.3
Wipff, G.4
-
24
-
-
57749103824
-
-
Bühl, M., Sieffert, N., and Wipff, G. Chem. Phys. Lett. 2009, 467, 287-293
-
(2009)
Chem. Phys. Lett.
, vol.467
, pp. 287-293
-
-
Bühl, M.1
Sieffert, N.2
Wipff, G.3
-
25
-
-
33646912240
-
-
Barrier for water exchange:,; barrier for "yl-exchange"
-
Barrier for water exchange: Bühl, M. and Kabrede, H. Inorg. Chem. 2006, 45, 3834-3836; barrier for "yl-exchange"
-
(2006)
Inorg. Chem.
, vol.45
, pp. 3834-3836
-
-
Bühl, M.1
Kabrede, H.2
-
27
-
-
77955885388
-
-
Schoendorff, G., de Jong, W. A., Gordon, M. S., and Windus, T. L. J. Phys. Chem. A 2010, 114, 8902-8912
-
(2010)
J. Phys. Chem. A
, vol.114
, pp. 8902-8912
-
-
Schoendorff, G.1
De Jong, W.A.2
Gordon, M.S.3
Windus, T.L.4
-
28
-
-
77950218603
-
-
For example, zwitterionic carboxyl ligands remain coordinated to uranyl in acetonitrile, but not in water
-
For example, zwitterionic carboxyl ligands remain coordinated to uranyl in acetonitrile, but not in water: Nockemann, P., Van Deun, R., Thijs, B., Huys, D., Vanecht, E., Van Hecke, K., Van Meervelt, L., and Binnemans, K. Inorg. Chem. 2010, 49, 3351-3360
-
(2010)
Inorg. Chem.
, vol.49
, pp. 3351-3360
-
-
Nockemann, P.1
Van Deun, R.2
Thijs, B.3
Huys, D.4
Vanecht, E.5
Van Hecke, K.6
Van Meervelt, L.7
Binnemans, K.8
-
30
-
-
0345491105
-
-
Lee, C., Yang, W., and Parr, R. G. Phys. Rev. B 1988, 37, 785-789
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
31
-
-
36449007808
-
-
Küchle, W., Dolg, M., Stoll, H., and Preuss, H. J. Chem. Phys. 1994, 100, 7535
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 7535
-
-
Küchle, W.1
Dolg, M.2
Stoll, H.3
Preuss, H.4
-
32
-
-
78650689607
-
-
see the Supporting Information for details of the valence basis set used.
-
see the Supporting Information for details of the valence basis set used.
-
-
-
-
33
-
-
77249087130
-
-
This small-core ECP has been shown to reproduce all-electron scalar relativistic results very well, see
-
This small-core ECP has been shown to reproduce all-electron scalar relativistic results very well, see: Odoh, S. O. and Schreckenbach, G. J. Phys. Chem. A 2010, 114, 1957-1963
-
(2010)
J. Phys. Chem. A
, vol.114
, pp. 1957-1963
-
-
Odoh, S.O.1
Schreckenbach, G.2
-
34
-
-
84962428785
-
-
As implemented in Gaussian 03
-
As implemented in Gaussian 03: Barone, V., Cossi, M., and Tomasi, J. J. Comput. Chem. 1998, 19, 404-417
-
(1998)
J. Comput. Chem.
, vol.19
, pp. 404-417
-
-
Barone, V.1
Cossi, M.2
Tomasi, J.3
-
35
-
-
84961986752
-
-
Cossi, M., Scalmani, G., Rega, N., and Barone, V. J. Chem. Phys. 2002, 117, 43-54
-
(2002)
J. Chem. Phys.
, vol.117
, pp. 43-54
-
-
Cossi, M.1
Scalmani, G.2
Rega, N.3
Barone, V.4
-
37
-
-
26844534384
-
-
Krishnan, R., Binkley, J. S., Seeger, R., and Pople, J. A. J. Chem. Phys. 1980, 72, 650-654
-
(1980)
J. Chem. Phys.
, vol.72
, pp. 650-654
-
-
Krishnan, R.1
Binkley, J.S.2
Seeger, R.3
Pople, J.A.4
-
38
-
-
84986468715
-
-
Clark, T., Chandrasekhar, J., Spitznagel, G. W., and Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294-301
-
(1983)
J. Comput. Chem.
, vol.4
, pp. 294-301
-
-
Clark, T.1
Chandrasekhar, J.2
Spitznagel, G.W.3
Schleyer, V.P.R.4
-
40
-
-
0001723472
-
-
The initial CPMD/BLYP simulations in the Parrinello group have afforded good descriptions of liquid water, see for instance:, although potential shortcomings of this functional are now better appreciated, see
-
The initial CPMD/BLYP simulations in the Parrinello group have afforded good descriptions of liquid water, see for instance: Sprik, M., Hutter, J., and Parrinello, M. J. Chem. Phys. 1996, 105, 1142-1152, although potential shortcomings of this functional are now better appreciated, see
-
(1996)
J. Chem. Phys.
, vol.105
, pp. 1142-1152
-
-
Sprik, M.1
Hutter, J.2
Parrinello, M.3
-
41
-
-
22944439420
-
-
references cited therein
-
Van deVondele, J., Mohamed, F., Krack, M., Hutter, J., Sprik, M., and Parrinello, M. J. Chem. Phys. 2005, 122, 014515, and references cited therein
-
(2005)
J. Chem. Phys.
, vol.122
, pp. 014515
-
-
Van Devondele, J.1
Mohamed, F.2
Krack, M.3
Hutter, J.4
Sprik, M.5
Parrinello, M.6
-
44
-
-
4143095330
-
-
Kendall, R. A., Dunning, T. H., Jr., and Harrison, R. A. J. Chem. Phys. 1992, 96, 6769-6806
-
(1992)
J. Chem. Phys.
, vol.96
, pp. 6769-6806
-
-
Kendall, R.A.1
Dunning Jr., T.H.2
Harrison, R.A.3
-
45
-
-
0011083499
-
-
Reed, A. E., Curtiss, L. A., and Weinhold, F. Chem. Rev. 1988, 88, 899-926
-
(1988)
Chem. Rev.
, vol.88
, pp. 899-926
-
-
Reed, A.E.1
Curtiss, L.A.2
Weinhold, F.3
-
46
-
-
0038626673
-
-
Revision E.01; Gaussian, Inc.: Pittsburgh, PA.
-
Frisch, M. J. and Pople, J. A. et al. Gaussian 03, Revision E.01; Gaussian, Inc.: Pittsburgh, PA, 2003.
-
(2003)
Gaussian 03
-
-
Frisch, M.J.1
Pople, J.A.2
-
50
-
-
0013059667
-
-
7; University of California: San Francisco, CA.
-
Case, D. A., Pearlman, D. A., Caldwell, J. W., Cheatham, T. E., III, Wang, J., Ross, W. S., Simmerling, C. L., Darden, T. A., Merz, K. M., Stanton, R. V., Cheng, A. L., Vincent, J. J., Crowley, M., Tsui, V., Gohlke, H., Radmer, R. J., Duan, Y., Pitera, J., Massova, I., Seibel, G. L., Singh, U. C., Weiner, P. K., and Kollman, P. A. AMBER7, 7; University of California: San Francisco, CA, 2002.
-
(2002)
AMBER7
-
-
Case, D.A.1
Pearlman, D.A.2
Caldwell, J.W.3
Cheatham III, T.E.4
Wang, J.5
Ross, W.S.6
Simmerling, C.L.7
Darden, T.A.8
Merz, K.M.9
Stanton, R.V.10
Cheng, A.L.11
Vincent, J.J.12
Crowley, M.13
Tsui, V.14
Gohlke, H.15
Radmer, R.J.16
Duan, Y.17
Pitera, J.18
Massova, I.19
Seibel, G.L.20
Singh, U.C.21
Weiner, P.K.22
Kollman, P.A.23
more..
-
52
-
-
0032066447
-
-
Wannier functions are a generalization to infinite periodic systems of the Boys localized orbitals [(c)
-
Silvestrelli, P. L., Marzari, N., Vanderbilt, D., and Parrinello, M. Solid State Commun. 1998, 107, 7; Wannier functions are a generalization to infinite periodic systems of the Boys localized orbitals [(c)
-
(1998)
Solid State Commun.
, vol.107
, pp. 7
-
-
Silvestrelli, P.L.1
Marzari, N.2
Vanderbilt, D.3
Parrinello, M.4
-
53
-
-
0002999684
-
-
Ed.; Academic Press: New York,; p ]. Wannier centers are the maxima of these localized orbitals denoting the highest negative charge concentration. For a review with some more background on Wannier functions and centers see
-
Boys, S. F. In Quantum Theory of Atoms, Molecules, and the Solid State; Löwdin, P.-O., Ed.; Academic Press: New York, 1966; p 253 ]. Wannier centers are the maxima of these localized orbitals denoting the highest negative charge concentration. For a review with some more background on Wannier functions and centers see
-
(1966)
Quantum Theory of Atoms, Molecules, and the Solid State
, pp. 253
-
-
Boys, S.F.1
Löwdin, P.-O.2
-
55
-
-
78650681879
-
-
Version 3.13.1; Copyright IBM Corp. 1990-2008, Copyright MPI für Festkörperforschung, Stuttgart, Germany, 1997-2001.
-
CPMD, Version 3.13.1; Copyright IBM Corp. 1990-2008, Copyright MPI für Festkörperforschung, Stuttgart, Germany, 1997-2001.
-
CPMD
-
-
-
56
-
-
78650711907
-
-
We are not claiming that this particular mechanism for ligand exchange would be the most favorable one for the complexes under scrutiny. The limited statistical significance of the single events notwithstanding, we are probing the apparent driving forces for systems in this transient region of phase space.
-
We are not claiming that this particular mechanism for ligand exchange would be the most favorable one for the complexes under scrutiny. The limited statistical significance of the single events notwithstanding, we are probing the apparent driving forces for systems in this transient region of phase space.
-
-
-
-
57
-
-
78650697413
-
-
The second maximum in the solid red curve above 3 Å stems from the distances between one water H atom and an acetonitrile bound to the other H atom.
-
The second maximum in the solid red curve above 3 Å stems from the distances between one water H atom and an acetonitrile bound to the other H atom.
-
-
-
-
58
-
-
78650689361
-
-
There are, arguably, many more possible isomers of 1B; it is unlikely, however, that they will be similar or even lower in energy than 1A. 1B can be considered representative for the solvation of the acetonitrile ligands in the CPMD simulation of the actual solution inasmuch as the solvent molecules around these ligands are rather mobile and are frequently found in "bridging" positions similar to the "upper" red MeCN molecule in 1B in Figure 3.
-
There are, arguably, many more possible isomers of 1B; it is unlikely, however, that they will be similar or even lower in energy than 1A. 1B can be considered representative for the solvation of the acetonitrile ligands in the CPMD simulation of the actual solution inasmuch as the solvent molecules around these ligands are rather mobile and are frequently found in "bridging" positions similar to the "upper" red MeCN molecule in 1B in Figure 3.
-
-
-
-
59
-
-
36148992273
-
-
Despite frequent claims that DFT would not be able to describe hydrogen bonding adequately, the accuracy of geometrical parameters and binding energies of H-bonded systems can be quite respectable: For example, for water clusters, the mean average errors in binding energies are below 1 and 0.5 kcal/mol with BLYP and B3LYP, respectively:, and for the HCNHF complex, a high-level coupled-cluster binding energy is reproduced within 0.5 kcal/mol with B3LYP
-
Despite frequent claims that DFT would not be able to describe hydrogen bonding adequately, the accuracy of geometrical parameters and binding energies of H-bonded systems can be quite respectable: For example, for water clusters, the mean average errors in binding energies are below 1 and 0.5 kcal/mol with BLYP and B3LYP, respectively: Santra, B., Michaelides, A., and Scheffler, M. J. Chem. Phys. 2007, 127, 184104, and for the HCNHF complex, a high-level coupled-cluster binding energy is reproduced within 0.5 kcal/mol with B3LYP
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 184104
-
-
Santra, B.1
Michaelides, A.2
Scheffler, M.3
-
61
-
-
78650707243
-
-
This procedure affords a very simple point-charge model, where the positive atomic charges (screened by the core if present) are placed at the nuclear positions, and negative charges of -2 at the positions of the Wannier centers. The total dipole moment is then calculated from this distribution of point charges.
-
This procedure affords a very simple point-charge model, where the positive atomic charges (screened by the core if present) are placed at the nuclear positions, and negative charges of -2 at the positions of the Wannier centers. The total dipole moment is then calculated from this distribution of point charges.
-
-
-
-
62
-
-
0142057630
-
-
See:, and references cited herein
-
See: Silvestrelli, P. L. and Parrinello, M. J. Chem. Phys. 1999, 111, 3572-3580, and references cited herein
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 3572-3580
-
-
Silvestrelli, P.L.1
Parrinello, M.2
-
64
-
-
0000882945
-
-
The importance of polarization effects on the energy profile of uranyl-water dissociation has been noted previously
-
The importance of polarization effects on the energy profile of uranyl-water dissociation has been noted previously: Hemmingsen, L., Amara, P., Ansoborlo, E., and Field, M. J. J. Phys. Chem. A 2000, 104, 4095-4101
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 4095-4101
-
-
Hemmingsen, L.1
Amara, P.2
Ansoborlo, E.3
Field, M.J.4
-
65
-
-
10844256529
-
-
These species always contained additional, coordinated anions (such as nitrate or perchlorate from the stock solutions); see, for example
-
These species always contained additional, coordinated anions (such as nitrate or perchlorate from the stock solutions); see, for example, Anbalagan, V., Chien, W., Gresham, G. L., Groenewold, G. S., and Van Stipdonk, M. J. Rapid Commun. Mass. Spectrom. 2004, 18, 3028-3034
-
(2004)
Rapid Commun. Mass. Spectrom.
, vol.18
, pp. 3028-3034
-
-
Anbalagan, V.1
Chien, W.2
Gresham, G.L.3
Groenewold, G.S.4
Van Stipdonk, M.J.5
-
67
-
-
33644549160
-
-
Van Stipdonk, M. J., Chien, W., Bulleigh, K., Wu, Q., and Groenewold, G. S. J. Phys. Chem. A 2006, 110, 959-970
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 959-970
-
-
Van Stipdonk, M.J.1
Chien, W.2
Bulleigh, K.3
Wu, Q.4
Groenewold, G.S.5
-
68
-
-
33748606261
-
-
2-NCMe fragments with U-N distances between 2.51 Å and 2.61 Å were found in the Cambridge Structure Database
-
2-NCMe fragments with U-N distances between 2.51 Å and 2.61 Å were found in the Cambridge Structure Database: Hall, T. J. J. Crystallogr. Spectrosc. Res. 1989, 19, 499
-
(1989)
J. Crystallogr. Spectrosc. Res.
, vol.19
, pp. 499
-
-
Hall, T.J.1
-
69
-
-
33947655759
-
-
refocodes HEYYAM, SAZDOM, YALSAG, YALSOU
-
Cametti, M. J. Am. Chem. Soc. 2007, 129, 3641, refocodes HEYYAM, SAZDOM, YALSAG, YALSOU
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 3641
-
-
Cametti, M.1
-
70
-
-
84961986801
-
-
For more accurate PCM results, the second solvation shell may have to be included explicitly, cf. the situation in aqueous uranyl hydrate
-
For more accurate PCM results, the second solvation shell may have to be included explicitly, cf. the situation in aqueous uranyl hydrate: Shamov, G. A. and Schreckenbach, G. J. Phys. Chem. A 2005, 109, 10961-10974
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 10961-10974
-
-
Shamov, G.A.1
Schreckenbach, G.2
-
72
-
-
78650713689
-
-
Attraction between the uranyl moiety and second-shell solvent molecules further compresses the first solvation shell ("constriction effect").
-
Attraction between the uranyl moiety and second-shell solvent molecules further compresses the first solvation shell ("constriction effect").
-
-
-
-
73
-
-
33947414069
-
-
Atoms-in-Molecules analyses of water clusters, on the other hand, have indicated charge transfer between atoms as origin of polarization
-
Atoms-in-Molecules analyses of water clusters, on the other hand, have indicated charge transfer between atoms as origin of polarization: Devereux, M. and Popelier, P. L. A. J. Phys. Chem. A 2007, 111, 1536-1544
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 1536-1544
-
-
Devereux, M.1
Popelier, P.L.A.2
-
74
-
-
78650703203
-
-
3 fragments in the Cambridge Structure Database with any other atom approaching hydrogen to within the sum of van-der-Waals radii returns ca. 16,400 and 3000 hits, respectively.
-
3 fragments in the Cambridge Structure Database with any other atom approaching hydrogen to within the sum of van-der-Waals radii returns ca. 16,400 and 3000 hits, respectively.
-
-
-
-
75
-
-
0033552238
-
-
See, for instance
-
See, for instance: Gu, Y., Kar, T., and Scheiner, S. J. Am. Chem. Soc. 1999, 121, 9411-9422
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 9411-9422
-
-
Gu, Y.1
Kar, T.2
Scheiner, S.3
-
76
-
-
3142728785
-
-
Despite their relative weakness, the importance of C- H···X interactions for determining crystal structures is well recognized; see, for example
-
Despite their relative weakness, the importance of C- H···X interactions for determining crystal structures is well recognized; see, for example, Biradha, K. CrystEngComm 2003, 5, 374-384
-
(2003)
CrystEngComm
, vol.5
, pp. 374-384
-
-
Biradha, K.1
-
77
-
-
70449413818
-
-
Schoendorff, G., Windus, T. L., and de Jond, W. A. J. Phys. Chem. A 2009, 113, 12525-12531
-
(2009)
J. Phys. Chem. A
, vol.113
, pp. 12525-12531
-
-
Schoendorff, G.1
Windus, T.L.2
De Jond, W.A.3
-
80
-
-
67649700373
-
-
Bodizs, G., Raabe, I., Scopelliti, R., Krossing, I., and Helm, L. Dalton Trans. 2009, 5137-5147
-
(2009)
Dalton Trans.
, pp. 5137-5147
-
-
Bodizs, G.1
Raabe, I.2
Scopelliti, R.3
Krossing, I.4
Helm, L.5
-
81
-
-
78650682098
-
-
A full account of these computations will be published separately.
-
A full account of these computations will be published separately.
-
-
-
-
84
-
-
0030576049
-
-
For example
-
For example, Heggie, M. I., Latham, C. D., Maynard, S. C. P., and Jones, R. Chem. Phys. Lett. 1996, 249, 485-490
-
(1996)
Chem. Phys. Lett.
, vol.249
, pp. 485-490
-
-
Heggie, M.I.1
Latham, C.D.2
Maynard, S.C.P.3
Jones, R.4
-
85
-
-
76549109227
-
-
Stokeley, K., Mazza, M. G., Stanley, H. E., and Franzese, G. Proc. Nat. Acad. Sci. 2010, 107, 1301-1306
-
(2010)
Proc. Nat. Acad. Sci.
, vol.107
, pp. 1301-1306
-
-
Stokeley, K.1
Mazza, M.G.2
Stanley, H.E.3
Franzese, G.4
-
86
-
-
34250928962
-
-
Born, M. Z. Physik 1920, 1, 45-48
-
(1920)
Z. Physik
, vol.1
, pp. 45-48
-
-
Born, M.1
-
87
-
-
84961985741
-
-
A spherical cavity as in the simple Kirkwood-Onsager model results in a bond elongation in the continuum; see, for example
-
A spherical cavity as in the simple Kirkwood-Onsager model results in a bond elongation in the continuum; see, for example, Martinez, J. M. M., Pappalardo, R. R., Marcos, E. S., Mennucci, B., and Tomasi, J. J. Phys. Chem. B 2002, 106, 1118-1123
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 1118-1123
-
-
Martinez, J.M.M.1
Pappalardo, R.R.2
Marcos, E.S.3
Mennucci, B.4
Tomasi, J.5
|