메뉴 건너뛰기




Volumn 104, Issue 2, 2010, Pages 181-194

Correlation ranking and stepwise regression procedures in principal components artificial neural networks modeling with application to predict toxic activity and human serum albumin binding affinity

Author keywords

ANN; Correlation ranking; HSA binding affinity; PCA; QSAR; Toxicity

Indexed keywords

BENZENE DERIVATIVE; HUMAN SERUM ALBUMIN;

EID: 78650309160     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chemolab.2010.08.007     Document Type: Article
Times cited : (23)

References (67)
  • 1
    • 34247885823 scopus 로고    scopus 로고
    • Quantitative structure-retention relationship for the Kovats retention indices of a large set of terpenes: a combined data splitting-feature selection strategy
    • Hemmateenejad B., Javadnia K., Elyasi M. Quantitative structure-retention relationship for the Kovats retention indices of a large set of terpenes: a combined data splitting-feature selection strategy. Anal. Chim. Acta 2007, 592:72-81.
    • (2007) Anal. Chim. Acta , vol.592 , pp. 72-81
    • Hemmateenejad, B.1    Javadnia, K.2    Elyasi, M.3
  • 2
    • 39149117977 scopus 로고    scopus 로고
    • Linear and nonlinear quantitative structure-property relationship models for solubility of some anthraquinone, anthrone and xanthone derivatives in supercritical carbon dioxide
    • Hemmateenejad B., Shamsipur M., Miri R., Elyasi M., Foroghinia F., Sharghi F. Linear and nonlinear quantitative structure-property relationship models for solubility of some anthraquinone, anthrone and xanthone derivatives in supercritical carbon dioxide. Anal. Chim. Acta 2008, 610:25-34.
    • (2008) Anal. Chim. Acta , vol.610 , pp. 25-34
    • Hemmateenejad, B.1    Shamsipur, M.2    Miri, R.3    Elyasi, M.4    Foroghinia, F.5    Sharghi, F.6
  • 3
    • 46749147927 scopus 로고    scopus 로고
    • Exploiting QSAR models in lead optimization
    • Gedeck P., Lewis R. Exploiting QSAR models in lead optimization. Curr. Opin. Drug Des 2008, 11:569-575.
    • (2008) Curr. Opin. Drug Des , vol.11 , pp. 569-575
    • Gedeck, P.1    Lewis, R.2
  • 4
    • 37249027245 scopus 로고    scopus 로고
    • Multivariate QSAR: from classical descriptors to new perspectives
    • Freitas M.P. Multivariate QSAR: from classical descriptors to new perspectives. Curr. Comput. Aided Drug Des. 2007, 3:235-239.
    • (2007) Curr. Comput. Aided Drug Des. , vol.3 , pp. 235-239
    • Freitas, M.P.1
  • 5
    • 33745924994 scopus 로고    scopus 로고
    • Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling
    • Hemmateenejad B., Miri R., Safarpour M., Mehdipour A. Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling. J. Comput. Chem. 2006, 27:1125-1135.
    • (2006) J. Comput. Chem. , vol.27 , pp. 1125-1135
    • Hemmateenejad, B.1    Miri, R.2    Safarpour, M.3    Mehdipour, A.4
  • 7
    • 0028326045 scopus 로고
    • Genetic algorithms in wavelength selection: a comparative study
    • Lucasius C.B., Beckers M.L.M., Kateman G. Genetic algorithms in wavelength selection: a comparative study. Anal. Chim. Acta 1994, 286:135-153.
    • (1994) Anal. Chim. Acta , vol.286 , pp. 135-153
    • Lucasius, C.B.1    Beckers, M.L.M.2    Kateman, G.3
  • 9
    • 0042700229 scopus 로고    scopus 로고
    • Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1, 4-dihydropyridines (nifedipine analogous)
    • Hemmateenejad B., Akhond B., Miri R., Shamsipur M. Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1, 4-dihydropyridines (nifedipine analogous). J. Chem. Inf. Comput. Sci. 2003, 43:1328-1334.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1328-1334
    • Hemmateenejad, B.1    Akhond, B.2    Miri, R.3    Shamsipur, M.4
  • 10
    • 0015417054 scopus 로고
    • Chance correlations in structure-activity studies using multiple regression analysis
    • Topliss J.G., Costello R.J. Chance correlations in structure-activity studies using multiple regression analysis. J. Med. Chem. 1972, 15:1066-1078.
    • (1972) J. Med. Chem. , vol.15 , pp. 1066-1078
    • Topliss, J.G.1    Costello, R.J.2
  • 11
    • 0018709674 scopus 로고
    • Chance factors in studies of quantitative structure-activity relationships
    • Topliss J.G., Edwards R.P. Chance factors in studies of quantitative structure-activity relationships. J. Med. Chem. 1979, 22:1238-1244.
    • (1979) J. Med. Chem. , vol.22 , pp. 1238-1244
    • Topliss, J.G.1    Edwards, R.P.2
  • 12
    • 13444265939 scopus 로고    scopus 로고
    • Judging the significance of multiple linear regression models
    • Livingstone D.J., Salt D.W. Judging the significance of multiple linear regression models. J. Med. Chem. 2005, 48:661-663.
    • (2005) J. Med. Chem. , vol.48 , pp. 661-663
    • Livingstone, D.J.1    Salt, D.W.2
  • 13
    • 33846877842 scopus 로고    scopus 로고
    • An improved approximation to the estimation of the critical F values in best subset regression
    • Salt D.W., Ajmani S., Crichton R., Livingstone D.J. An improved approximation to the estimation of the critical F values in best subset regression. J. Chem. Inf. Model. 2007, 47:143-149.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 143-149
    • Salt, D.W.1    Ajmani, S.2    Crichton, R.3    Livingstone, D.J.4
  • 14
    • 58149498317 scopus 로고    scopus 로고
    • QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors
    • Hemmateenejad B., Yazdani M. QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors. Anal. Chim. Acta 2009, 634:27-35.
    • (2009) Anal. Chim. Acta , vol.634 , pp. 27-35
    • Hemmateenejad, B.1    Yazdani, M.2
  • 19
    • 0030810012 scopus 로고    scopus 로고
    • Evaluation of principal component selection methods to form a global prediction model by principal component regression
    • Xie Y.L., Kalivas J.H. Evaluation of principal component selection methods to form a global prediction model by principal component regression. Anal. Chim. Acta 1997, 348:19-27.
    • (1997) Anal. Chim. Acta , vol.348 , pp. 19-27
    • Xie, Y.L.1    Kalivas, J.H.2
  • 20
    • 0034648775 scopus 로고    scopus 로고
    • Genetic algorithms applied to the selection of factors in principal component regression
    • Depczynski U., Frost V.J., Molt K. Genetic algorithms applied to the selection of factors in principal component regression. Anal. Chim. Acta 2000, 420:217-227.
    • (2000) Anal. Chim. Acta , vol.420 , pp. 217-227
    • Depczynski, U.1    Frost, V.J.2    Molt, K.3
  • 21
    • 0032076675 scopus 로고    scopus 로고
    • Genetic algorithm applied to the selection of principal components
    • Barros A.S., Rutledge D.N. Genetic algorithm applied to the selection of principal components. Chemom. Intell. Lab. Syst. 1998, 40:65-81.
    • (1998) Chemom. Intell. Lab. Syst. , vol.40 , pp. 65-81
    • Barros, A.S.1    Rutledge, D.N.2
  • 22
    • 85207092851 scopus 로고
    • Which principal components to utilize for principal component regression
    • Sutter J.M., Kalivas J.H., Lang P.M. Which principal components to utilize for principal component regression. J. Chemom. 1992, 6:217-225.
    • (1992) J. Chemom. , vol.6 , pp. 217-225
    • Sutter, J.M.1    Kalivas, J.H.2    Lang, P.M.3
  • 23
    • 84984311346 scopus 로고
    • A correlation principal component regression analysis of NIR data
    • Sun J. A correlation principal component regression analysis of NIR data. J. Chemom. 1995, 9:21-29.
    • (1995) J. Chemom. , vol.9 , pp. 21-29
    • Sun, J.1
  • 24
    • 0032206032 scopus 로고    scopus 로고
    • Comparison of prediction- and correlation-based methods to select the best subset of principal components for principal component regression and detect outlying objects
    • Verdu-Andres D.L., Massart J. Comparison of prediction- and correlation-based methods to select the best subset of principal components for principal component regression and detect outlying objects. Appl. Spectrosc. 1998, 52:1425-1434.
    • (1998) Appl. Spectrosc. , vol.52 , pp. 1425-1434
    • Verdu-Andres, D.L.1    Massart, J.2
  • 26
    • 2942704287 scopus 로고    scopus 로고
    • Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm
    • Wegner J.K., Frohlich H., Zell A. Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm. J. Chem. Inf. Comput. Sci. 2004, 44:921-930.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 921-930
    • Wegner, J.K.1    Frohlich, H.2    Zell, A.3
  • 27
    • 0031118203 scopus 로고    scopus 로고
    • No free lunch theorems for optimization
    • Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1:67-82. http://citeseer.ist.psu.edu/wolpert96no.html.
    • (1997) IEEE Trans. Evol. Comput. , vol.1 , pp. 67-82
    • Wolpert, D.H.1    Macready, W.G.2
  • 28
    • 0042199118 scopus 로고    scopus 로고
    • Neural networks: accurate nonlinear QSAR model for HEPT derivatives
    • Douali L., Villemin D., Cherqaoui D. Neural networks: accurate nonlinear QSAR model for HEPT derivatives. J. Chem. Inf. Comput. Sci. 2003, 43:1200-1207.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1200-1207
    • Douali, L.1    Villemin, D.2    Cherqaoui, D.3
  • 29
    • 0000081958 scopus 로고    scopus 로고
    • Application of an artificial neural network in chromatography-retention behavior prediction and pattern recognition
    • Zhao R.H., Yue B.F., Ni J.Y., Zhou H.F., Zhang Y.K. Application of an artificial neural network in chromatography-retention behavior prediction and pattern recognition. Chemom. Intell. Lab. Syst. 1999, 45:163-170.
    • (1999) Chemom. Intell. Lab. Syst. , vol.45 , pp. 163-170
    • Zhao, R.H.1    Yue, B.F.2    Ni, J.Y.3    Zhou, H.F.4    Zhang, Y.K.5
  • 30
    • 0031735526 scopus 로고    scopus 로고
    • Artificial neural networks for computer-based molecular design
    • Schneider G., Wrede P. Artificial neural networks for computer-based molecular design. Prog. Biophys. Mol. Biol. 1998, 70:175-222.
    • (1998) Prog. Biophys. Mol. Biol. , vol.70 , pp. 175-222
    • Schneider, G.1    Wrede, P.2
  • 31
    • 0042781547 scopus 로고    scopus 로고
    • Application of ab initio theory for the prediction of acidity constants of some 1-hydroxy-9, 10-anthraquinone derivatives using genetic neural network
    • Hemmateenejad B., Safarpour M.A., Taghavi F. Application of ab initio theory for the prediction of acidity constants of some 1-hydroxy-9, 10-anthraquinone derivatives using genetic neural network. J. Mol. Struct. THEOCHEM 2003, 635:183-190.
    • (2003) J. Mol. Struct. THEOCHEM , vol.635 , pp. 183-190
    • Hemmateenejad, B.1    Safarpour, M.A.2    Taghavi, F.3
  • 32
    • 0037067124 scopus 로고    scopus 로고
    • Multicomponent acid-base titration by principal component-artificial neural network calibration
    • Shamsipur M., Hemateenejad B., Akhon M. Multicomponent acid-base titration by principal component-artificial neural network calibration. Anal. Chim. Acta 2002, 461:147-153.
    • (2002) Anal. Chim. Acta , vol.461 , pp. 147-153
    • Shamsipur, M.1    Hemateenejad, B.2    Akhon, M.3
  • 34
    • 0001594118 scopus 로고
    • Nonlinear multivariate calibration using principal components regression and artificial neural networks
    • Gemperline P.J., Long J.R., Gregoriou G. Nonlinear multivariate calibration using principal components regression and artificial neural networks. Anal. Chem. 1991, 63:2313-2323.
    • (1991) Anal. Chem. , vol.63 , pp. 2313-2323
    • Gemperline, P.J.1    Long, J.R.2    Gregoriou, G.3
  • 35
    • 0033219692 scopus 로고    scopus 로고
    • Structure-activity relationship studies of carcinogenic activity of polycyclic aromatic hydrocarbons using calculated molecular descriptors with principal component analysis and neural network methods
    • Vendrame R., Braga R.S., Takahata Y., Galvao D.S. Structure-activity relationship studies of carcinogenic activity of polycyclic aromatic hydrocarbons using calculated molecular descriptors with principal component analysis and neural network methods. J. Chem. Inf. Comput. Sci. 1999, 39:1094-1104.
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 1094-1104
    • Vendrame, R.1    Braga, R.S.2    Takahata, Y.3    Galvao, D.S.4
  • 36
    • 0042700229 scopus 로고    scopus 로고
    • Genetic algorithm applied to the selection of factors in principle component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1, 4-dihydropyridines (nifedipine analogous)
    • Hemmateenejad B., Akhond M., Miri R., Shamsipur M. Genetic algorithm applied to the selection of factors in principle component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1, 4-dihydropyridines (nifedipine analogous). J. Chem. Inf. Comput. Sci. 2003, 43:1328-1334.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1328-1334
    • Hemmateenejad, B.1    Akhond, M.2    Miri, R.3    Shamsipur, M.4
  • 37
    • 34447335391 scopus 로고    scopus 로고
    • ANN-QSAR model of drug-binding to human serum albumin
    • Deeb O., Hemmateenejad B. ANN-QSAR model of drug-binding to human serum albumin. Chem. Biol. Drug Des. 2007, 70:19-29.
    • (2007) Chem. Biol. Drug Des. , vol.70 , pp. 19-29
    • Deeb, O.1    Hemmateenejad, B.2
  • 38
    • 13844316617 scopus 로고    scopus 로고
    • Toward an optimal procedure for PC-ANN model building: prediction of the carcinogenic activity of a large set of drugs
    • Hemmateenejad B., Safarpour M.A., Miri R., Nesari N. Toward an optimal procedure for PC-ANN model building: prediction of the carcinogenic activity of a large set of drugs. J. Chem. Inf. Model. 2005, 45:190-199.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 190-199
    • Hemmateenejad, B.1    Safarpour, M.A.2    Miri, R.3    Nesari, N.4
  • 39
    • 38849174906 scopus 로고    scopus 로고
    • PCR-ANN and RTO approach to L-opioid receptor-binding affinity. pooling data from different sources
    • Ramírez-Galicia G., Garduño-Juárez R., Deeb O., Hemmateenejad B. PCR-ANN and RTO approach to L-opioid receptor-binding affinity. pooling data from different sources. Chem. Biol. Drug Des. 2008, 71:260-270.
    • (2008) Chem. Biol. Drug Des. , vol.71 , pp. 260-270
    • Ramírez-Galicia, G.1    Garduño-Juárez, R.2    Deeb, O.3    Hemmateenejad, B.4
  • 40
    • 12844286268 scopus 로고    scopus 로고
    • Correlation ranking procedure for factor selection in PC-ANN modeling and application to ADMETox evaluation
    • Hemmateenejad B. Correlation ranking procedure for factor selection in PC-ANN modeling and application to ADMETox evaluation. Chemom. Intell. Lab. Syst. 2005, 75:231-245.
    • (2005) Chemom. Intell. Lab. Syst. , vol.75 , pp. 231-245
    • Hemmateenejad, B.1
  • 41
    • 18844376955 scopus 로고    scopus 로고
    • Quantitative structure-electrochemistry relationship study of some organic compounds using PC-ANN and PCR
    • Hemmateenejad B., Shamsipur M. Quantitative structure-electrochemistry relationship study of some organic compounds using PC-ANN and PCR. Internet Internet Electron. J. Mol. Des. 2004, 3:316-334.
    • (2004) Internet Internet Electron. J. Mol. Des. , vol.3 , pp. 316-334
    • Hemmateenejad, B.1    Shamsipur, M.2
  • 42
    • 55949124820 scopus 로고    scopus 로고
    • Highly correlating distance/connectivity-based topological indices 5. Accurate prediction of liquid density of organic molecules using PCR and PC-ANN
    • Shamsipur M., Ghavami R., Sharghi H., Hemmateenejad B. Highly correlating distance/connectivity-based topological indices 5. Accurate prediction of liquid density of organic molecules using PCR and PC-ANN. J. Mol. Graph. Model. 2008, 27:506-511.
    • (2008) J. Mol. Graph. Model. , vol.27 , pp. 506-511
    • Shamsipur, M.1    Ghavami, R.2    Sharghi, H.3    Hemmateenejad, B.4
  • 44
    • 0037404491 scopus 로고    scopus 로고
    • In silico prediction of drug-binding strengths to human serum albumin
    • Colmenarejo G. In silico prediction of drug-binding strengths to human serum albumin. Med. Res. Rev. 2003, 23:275-301.
    • (2003) Med. Res. Rev. , vol.23 , pp. 275-301
    • Colmenarejo, G.1
  • 45
    • 0036891365 scopus 로고    scopus 로고
    • ADME evaluation: 2. A computer model for the prediction of intestinal absorption in humans
    • Klopman G., Stefan L.R., Saiakhov R.D. ADME evaluation: 2. A computer model for the prediction of intestinal absorption in humans. Eur. J. Pharm. Sci. 2002, 17:253-263.
    • (2002) Eur. J. Pharm. Sci. , vol.17 , pp. 253-263
    • Klopman, G.1    Stefan, L.R.2    Saiakhov, R.D.3
  • 46
    • 0034094124 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks
    • Burden F.R., Winkler D.A. Quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks. Chem. Res. Toxicol. 2000, 13:436-440.
    • (2000) Chem. Res. Toxicol. , vol.13 , pp. 436-440
    • Burden, F.R.1    Winkler, D.A.2
  • 47
    • 0035818919 scopus 로고    scopus 로고
    • Cheminformatic models to predict binding affinities to human serum albumin
    • Colmenarejo G., Alvarez-Pedraglio A., Lavandera J.L. Cheminformatic models to predict binding affinities to human serum albumin. J. Med. Chem. 2001, 44:4370-4378.
    • (2001) J. Med. Chem. , vol.44 , pp. 4370-4378
    • Colmenarejo, G.1    Alvarez-Pedraglio, A.2    Lavandera, J.L.3
  • 48
    • 78650304513 scopus 로고    scopus 로고
    • [48] National Center for Biotechnology Information. Information on biological activities of small molecules. Available at: (accessed on 17 April).
    • [48] National Center for Biotechnology Information. Information on biological activities of small molecules. Available at: (accessed on 17 April 2007). http://pubchem.ncbi.nlm.nih.gov/search.
    • (2007)
  • 49
    • 78650307918 scopus 로고    scopus 로고
    • [49] Todeschini, R. Consonni, V. Mauri, A. Pavan, M.
    • [49] Todeschini, R. Consonni, V. Mauri, A. Pavan, M. http://www.disat.unimib.it/chm/Dragon.htm.
  • 50
    • 0034181655 scopus 로고    scopus 로고
    • Molecular descriptors for effective classification of biologically active compounds based on principal component analysis identified by a genetic algorithm
    • Xue L., Bajorath J. Molecular descriptors for effective classification of biologically active compounds based on principal component analysis identified by a genetic algorithm. J. Chem. Inf. Comput. Sci. 2000, 40:801-809.
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 801-809
    • Xue, L.1    Bajorath, J.2
  • 51
    • 0004867619 scopus 로고    scopus 로고
    • Prediction of human intestinal absorption using a combined simulated annealing/backpropagation neural network approach
    • H.D. Hfltje, M. Sippl (Eds.)
    • Gohlke H., Dullweber F., Kamm W., März J., Kissel T., Klebe G. Prediction of human intestinal absorption using a combined simulated annealing/backpropagation neural network approach. Rational Approaches to Drug Design 2001, 261-270. H.D. Hfltje, M. Sippl (Eds.).
    • (2001) Rational Approaches to Drug Design , pp. 261-270
    • Gohlke, H.1    Dullweber, F.2    Kamm, W.3    März, J.4    Kissel, T.5    Klebe, G.6
  • 53
    • 0345548608 scopus 로고    scopus 로고
    • Modeling drug binding affinity with E-state topological structure representation
    • Hall L.M., Hall L.H., Kier L.B. Modeling drug binding affinity with E-state topological structure representation. J. Chem. Inf. Comput. Sci. 2003, 43:2120-2128.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 2120-2128
    • Hall, L.M.1    Hall, L.H.2    Kier, L.B.3
  • 54
    • 5444250595 scopus 로고    scopus 로고
    • QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine
    • Xue C.X., Zhang H.X., Liu X.J., Yao M.C., Liu Z.D., Fan B.T. QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. J. Chem. Inf. Comput. Sci. 2004, 44:1693-1700.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1693-1700
    • Xue, C.X.1    Zhang, H.X.2    Liu, X.J.3    Yao, M.C.4    Liu, Z.D.5    Fan, B.T.6
  • 55
    • 33746796821 scopus 로고    scopus 로고
    • In silico ADME modelling 2: computational models to predict human serum albumin binding affinity using ant colony systems
    • Gunturi S.B., Narayanan R., Khandelwal A. In silico ADME modelling 2: computational models to predict human serum albumin binding affinity using ant colony systems. Bioorg. Med. Chem. 2006, 14:4118-4129.
    • (2006) Bioorg. Med. Chem. , vol.14 , pp. 4118-4129
    • Gunturi, S.B.1    Narayanan, R.2    Khandelwal, A.3
  • 56
    • 0035905855 scopus 로고    scopus 로고
    • Albumin: influence of the protonation state of Lys195 and Lys199
    • Diaz N., Suarez D., Sordo T.L., Merz K.M. Albumin: influence of the protonation state of Lys195 and Lys199. J. Med. Chem. 2001, 44:250-260.
    • (2001) J. Med. Chem. , vol.44 , pp. 250-260
    • Diaz, N.1    Suarez, D.2    Sordo, T.L.3    Merz, K.M.4
  • 57
    • 3242757468 scopus 로고    scopus 로고
    • Contribution of ionization and lipophilicity to drug binding to albumin: a preliminary step toward biodistribution prediction
    • Ermondi G., Lorenti M., Caron G. Contribution of ionization and lipophilicity to drug binding to albumin: a preliminary step toward biodistribution prediction. J. Med. Chem. 2004, 47:3949-3961.
    • (2004) J. Med. Chem. , vol.47 , pp. 3949-3961
    • Ermondi, G.1    Lorenti, M.2    Caron, G.3
  • 58
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323:33-536.
    • (1986) Nature , vol.323 , pp. 33-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 59
    • 0345516002 scopus 로고    scopus 로고
    • Aspects of network training and validation on noisy data Part 1. Training aspects
    • Derks E.P.P.A., Buydens L.M.C. Aspects of network training and validation on noisy data Part 1. Training aspects. Chemom. Intell. Lab. Syst. 1998, 41:171-184.
    • (1998) Chemom. Intell. Lab. Syst. , vol.41 , pp. 171-184
    • Derks, E.P.P.A.1    Buydens, L.M.C.2
  • 62
    • 0034025970 scopus 로고    scopus 로고
    • An amplified ELISA inhibition method for the measurement of airborne soybean allergens
    • Cruz M.J., Rodrigo M.J., Anto J.M., Morell F. An amplified ELISA inhibition method for the measurement of airborne soybean allergens. Int. Arch. Allergy Immunol. 2000, 112:42-48.
    • (2000) Int. Arch. Allergy Immunol. , vol.112 , pp. 42-48
    • Cruz, M.J.1    Rodrigo, M.J.2    Anto, J.M.3    Morell, F.4
  • 63
    • 84988121052 scopus 로고
    • A study of single compound additives to minimize the matrix induced chromatographic response enhancement observed in the gas chromatography of pesticide residues
    • Erney D.R., Poole C.F. A study of single compound additives to minimize the matrix induced chromatographic response enhancement observed in the gas chromatography of pesticide residues. J. High Resol. Chromatogr. 1993, 16:501-503.
    • (1993) J. High Resol. Chromatogr. , vol.16 , pp. 501-503
    • Erney, D.R.1    Poole, C.F.2
  • 66
    • 0034094124 scopus 로고    scopus 로고
    • A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks
    • Burden F.R., Winkler D.A. A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks. Chem. Res. Toxicol. 2000, 13:436-440.
    • (2000) Chem. Res. Toxicol. , vol.13 , pp. 436-440
    • Burden, F.R.1    Winkler, D.A.2
  • 67
    • 44149114693 scopus 로고    scopus 로고
    • Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks
    • Jalali-Heravi M., Kyani A. Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks. Chemosphere 2008, 72:733-740.
    • (2008) Chemosphere , vol.72 , pp. 733-740
    • Jalali-Heravi, M.1    Kyani, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.