-
1
-
-
0001366394
-
-
APPLAB 0003-6951,. 10.1063/1.94432
-
P. Sheng, A. N. Bloch, and R. S. Stepleman, Appl. Phys. Lett. APPLAB 0003-6951 43, 579 (1983). 10.1063/1.94432
-
(1983)
Appl. Phys. Lett.
, vol.43
, pp. 579
-
-
Sheng, P.1
Bloch, A.N.2
Stepleman, R.S.3
-
2
-
-
84975606816
-
-
APOPAI 0003-6935,. 10.1364/AO.34.002476
-
C. Heine and R. H. Morf, Appl. Opt. APOPAI 0003-6935 34, 2476 (1995). 10.1364/AO.34.002476
-
(1995)
Appl. Opt.
, vol.34
, pp. 2476
-
-
Heine, C.1
Morf, R.H.2
-
3
-
-
0035875208
-
-
JAPIAU 0021-8979,. 10.1063/1.1370996
-
C. Eisele, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. JAPIAU 0021-8979 89, 7722 (2001). 10.1063/1.1370996
-
(2001)
J. Appl. Phys.
, vol.89
, pp. 7722
-
-
Eisele, C.1
Nebel, C.E.2
Stutzmann, M.3
-
4
-
-
33748683797
-
Efficiency enhancement in Si solar cells by textured photonic crystal back reflector
-
DOI 10.1063/1.2349845
-
L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, Appl. Phys. Lett. APPLAB 0003-6951 89, 111111 (2006). 10.1063/1.2349845 (Pubitemid 44396537)
-
(2006)
Applied Physics Letters
, vol.89
, Issue.11
, pp. 111111
-
-
Zeng, L.1
Yi, Y.2
Hong, C.3
Liu, J.4
Feng, N.5
Duan, X.6
Kimerling, L.C.7
Alamariu, B.A.8
-
5
-
-
37149011713
-
-
OPEXFF 1094-4087,. 10.1364/OE.15.016986
-
P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, Opt. Express OPEXFF 1094-4087 15, 16986 (2007). 10.1364/OE.15.016986
-
(2007)
Opt. Express
, vol.15
, pp. 16986
-
-
Bermel, P.1
Luo, C.2
Zeng, L.3
Kimerling, L.C.4
Joannopoulos, J.D.5
-
6
-
-
84905954040
-
-
National Solar Technology Roadma
-
B. Keyes, National Solar Technology Roadmap, www1.eere.energy.gov/solar/ pdfs/41734.pdf.
-
-
-
Keyes, B.1
-
7
-
-
41549090156
-
-
MRSPDH 0272-9172.
-
C. W. Teplin, H. M. Branz, K. M. Jones, M. J. Romero, P. Stradins, and S. Gall, Mater. Res. Soc. Symp. Proc. MRSPDH 0272-9172 989, 0989 (2007).
-
(2007)
Mater. Res. Soc. Symp. Proc.
, vol.989
, pp. 0989
-
-
Teplin, C.W.1
Branz, H.M.2
Jones, K.M.3
Romero, M.J.4
Stradins, P.5
Gall, S.6
-
8
-
-
45849142618
-
-
THSFAP 0040-6090,. 10.1016/j.tsf.2007.12.114
-
I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, Thin Solid Films THSFAP 0040-6090 516, 6984 (2008). 10.1016/j.tsf.2007.12.114
-
(2008)
Thin Solid Films
, vol.516
, pp. 6984
-
-
Gordon, I.1
Carnel, L.2
Van Gestel, D.3
Beaucarne, G.4
Poortmans, J.5
-
9
-
-
9944240844
-
Crystalline silicon on glass (CSG) thin-film solar cell modules
-
DOI 10.1016/j.solener.2004.06.023, PII S0038092X04001641, Thin Film PV
-
M. A. Green, Sol. Energy SRENA4 0038-092X 77, 587 (2004). 10.1016/j.solener.2004.06.023 (Pubitemid 39605894)
-
(2004)
Solar Energy
, vol.77
, Issue.6
, pp. 857-863
-
-
Green, M.A.1
Basore, P.A.2
Chang, N.3
Clugston, D.4
Egan, R.5
Evans, R.6
Hogg, D.7
Jarnason, S.8
Keevers, M.9
Lasswell, P.10
O'Sullivan, J.11
Schubert, U.12
Turner, A.13
Wenham, S.R.14
Young, T.15
-
10
-
-
78650137205
-
-
U.S. Patent No. 4,398,056.
-
P. Sheng, U.S. Patent No. 4,398,056 (1983).
-
(1983)
-
-
Sheng, P.1
-
11
-
-
78650095073
-
-
International Patent No. WO 92/14270.
-
R. H. Morf, International Patent No. WO 92/14270 (1992).
-
(1992)
-
-
Morf, R.H.1
-
12
-
-
77957227761
-
-
JVTBD9 1071-1023,. 10.1116/1.3463454
-
D. N. Weiss, S. T. Meyers, and D. A. Keszler, J. Vac. Sci. Technol. B JVTBD9 1071-1023 28, 823 (2010). 10.1116/1.3463454
-
(2010)
J. Vac. Sci. Technol. B
, vol.28
, pp. 823
-
-
Weiss, D.N.1
Meyers, S.T.2
Keszler, D.A.3
-
13
-
-
34547938514
-
Solution-processed aluminum oxide phosphate thin-film dielectrics
-
DOI 10.1021/cm0702619
-
S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, Chem. Mater. CMATEX 0897-4756 19, 4023 (2007). 10.1021/cm0702619 (Pubitemid 47266096)
-
(2007)
Chemistry of Materials
, vol.19
, Issue.16
, pp. 4023-4029
-
-
Meyers, S.T.1
Anderson, J.T.2
Hong, D.3
Hung, C.M.4
Wager, J.F.5
Keszler, D.A.6
-
14
-
-
0004180719
-
-
6th ed. (Newport, Rochester, NY),.
-
C. Palmer, Diffraction Grating Handbook, 6th ed. (Newport, Rochester, NY, 2005), p. 21.
-
(2005)
Diffraction Grating Handbook
, pp. 21
-
-
Palmer, C.1
-
15
-
-
33751200713
-
-
4th ed. (Addison-Wesley, San Francisco),.
-
E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, 2001), p. 101.
-
(2001)
Optics
, pp. 101
-
-
Hecht, E.1
-
16
-
-
9944240844
-
Crystalline silicon on glass (CSG) thin-film solar cell modules
-
DOI 10.1016/j.solener.2004.06.023, PII S0038092X04001641, Thin Film PV
-
M. A. Green, Sol. Energy SRENA4 0038-092X 77, 857 (2004). 10.1016/j.solener.2004.06.023 (Pubitemid 39605894)
-
(2004)
Solar Energy
, vol.77
, Issue.6
, pp. 857-863
-
-
Green, M.A.1
Basore, P.A.2
Chang, N.3
Clugston, D.4
Egan, R.5
Evans, R.6
Hogg, D.7
Jarnason, S.8
Keevers, M.9
Lasswell, P.10
O'Sullivan, J.11
Schubert, U.12
Turner, A.13
Wenham, S.R.14
Young, T.15
-
17
-
-
78650162847
-
-
Ph.D. thesis, Oregon State University.
-
S. T. Meyers, Ph.D. thesis, Oregon State University, 2008.
-
(2008)
-
-
Meyers, S.T.1
-
18
-
-
0003760432
-
-
edited by R. Hull (INSPEC, London),.
-
R. Hull, Properties of Crystalline Silicon, edited by, R. Hull, (INSPEC, London, 1999), p. 683.
-
(1999)
Properties of Crystalline Silicon
, pp. 683
-
-
Hull, R.1
-
20
-
-
84975598513
-
-
OPLEDP 0146-9592,. 10.1364/OL.8.000491
-
H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, Opt. Lett. OPLEDP 0146-9592 8, 491 (1983). 10.1364/OL.8.000491
-
(1983)
Opt. Lett.
, vol.8
, pp. 491
-
-
Deckman, H.W.1
Roxlo, C.B.2
Yablonovitch, E.3
-
21
-
-
78650102257
-
-
JAPIAU 0021-8979.
-
F. J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, J. Appl. Phys. JAPIAU 0021-8979 104 (2008).
-
(2008)
J. Appl. Phys.
, pp. 104
-
-
Haug, F.J.1
Söderström, T.2
Cubero, O.3
Terrazzoni-Daudrix, V.4
Ballif, C.5
-
24
-
-
84905926052
-
-
See
-
See http://rredc.nrel.gov/solar/spectra/am1.5/
-
-
-
-
25
-
-
84905931346
-
-
We note that the relative increase in absorption is higher for the sinusoidal grating than for the square grating despite a slightly smaller effective thickness multiplier for the former. Our measurements showed a surprisingly high 20% diffuse component in the flat reflector for the square grating sample. The higher level of diffuse light trapping, which is reflected in our model calculation, leads to the smaller gain through diffractive light trapping for this sample. This effect, which was not further investigated, seems to be associated with the lower processing temperature for the square grating sample, as discussed above.
-
We note that the relative increase in absorption is higher for the sinusoidal grating than for the square grating despite a slightly smaller effective thickness multiplier for the former. Our measurements showed a surprisingly high 20% diffuse component in the flat reflector for the square grating sample. The higher level of diffuse light trapping, which is reflected in our model calculation, leads to the smaller gain through diffractive light trapping for this sample. This effect, which was not further investigated, seems to be associated with the lower processing temperature for the square grating sample, as discussed above.
-
-
-
|