메뉴 건너뛰기




Volumn 8, Issue SUPPL. 1, 2010, Pages 147-160

Cancer classification from the gene expression profiles by discriminant kernel-pls

Author keywords

classification; Discriminant Kernel PLS; Microarray

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGY; CLASSIFICATION; DISCRIMINANT ANALYSIS; DNA MICROARRAY; EVALUATION; FEMALE; GENE EXPRESSION PROFILING; GENETIC DATABASE; GENETICS; HUMAN; LEUKEMIA; LUNG TUMOR; MALE; NEOPLASM; PROSTATE TUMOR; REGRESSION ANALYSIS; STATISTICS;

EID: 78650021002     PISSN: 02197200     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219720010005130     Document Type: Article
Times cited : (12)

References (37)
  • 2
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • DOI 10.1093/bioinformatics/btg102
    • Lee YK, Lee CK, Classification of multiple cancer types by multicategory support vector machines using gene expression data, Bioinformatics 19:1132-1139, 2003. (Pubitemid 36790015)
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1132-1139
    • Lee, Y.1    Lee, C.-K.2
  • 3
    • 4444353693 scopus 로고    scopus 로고
    • Kernel-based self-organized maps trained with supervised bias for gene expression data analysis
    • Papadimitriou S, Likothanassis SD, Kernel-based self-organized maps trained with supervised bias for gene expression data analysis, J Bioinform Comput Biol 4:647-80, 2004.
    • (2004) J Bioinform Comput Biol , vol.4 , pp. 647-80
    • Papadimitriou, S.1    Likothanassis, S.D.2
  • 4
    • 0041627900 scopus 로고    scopus 로고
    • Multiclass cancer classification using gene expression profiling and probabilistic neural networks
    • Berrar DP, Downes CS, Dubitzky W, Multiclass cancer classification using gene expression profiling and probabilistic neural networks, Pac Symp Biocomput 8:5-16, 2003.
    • (2003) Pac Symp Biocomput , vol.8 , pp. 5-16
    • Berrar, D.P.1    Downes, C.S.2    Dubitzky, W.3
  • 5
    • 10244244945 scopus 로고    scopus 로고
    • Single-layer artificial neural networks for gene expression analysis
    • DOI 10.1016/j.neucom.2003.10.017, PII S0925231203005277
    • Narayanana A, Keedwella EC, Gamalielssonb J, Tatinenia S, Single-layer artificial neural networks for gene expression analysis, Neurocomputing 61:217-240, 2004. (Pubitemid 39618378)
    • (2004) Neurocomputing , vol.61 , Issue.1-4 , pp. 217-240
    • Narayanan, A.1    Keedwell, E.C.2    Gamalielsson, J.3    Tatineni, S.4
  • 6
    • 3342991601 scopus 로고    scopus 로고
    • Gene selection and classification from microarray data using kernel machine
    • DOI 10.1016/j.febslet.2004.05.087, PII S0014579304008142
    • Ji-Hoon Cho, Dongkwon Lee, Jin Hyun Park, In-Beum Lee, Gene selection and classification from microarray data using kernel machine, FEBS Lett 571:93-98, 2004. (Pubitemid 38992929)
    • (2004) FEBS Letters , vol.571 , Issue.1-3 , pp. 93-98
    • Cho, J.-H.1    Lee, D.2    Park, J.H.3    Lee, I.-B.4
  • 11
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • Scott A Armstrong, Jane E Staunton, Lewis B Silverman et al., MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia, Nature Genetics 30:41-47, 2002.
    • (2002) Nature Genetics , vol.30 , pp. 41-47
    • Armstrong, S.A.1    Staunton, J.E.2    Silverman, L.B.3
  • 12
    • 33847162049 scopus 로고    scopus 로고
    • Classification of microarray data using gene networks
    • DOI 10.1186/1471-2105-8-35
    • Franck Rapaport, Andrei Zinovyev, Marie Dutreix, Emmanuel Barillot and Jean-Philippe Vert, Classification of microarray data using gene networks, BMC Bioinfor-matics 8:35, 2007. (Pubitemid 46291500)
    • (2007) BMC Bioinformatics , vol.8 , pp. 35
    • Rapaport, F.1    Zinovyev, A.2    Dutreix, M.3    Barillot, E.4    Vert, J.-P.5
  • 13
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Yvan Saeys, Iñaki Inza, Pedro Larrañaga, A review of feature selection techniques in bioinformatics, Bioinformatics 23(19):2507-2517, 2007. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 14
    • 0034894874 scopus 로고    scopus 로고
    • Feature (Gene) selection in gene expression-based tumor classification
    • DOI 10.1006/mgme.2001.3193
    • Momiao Xiong, Wuju Li, Jinying Zhao et al., Feature (Gene) selection in gene expression based tumor classification, Mol Genet Metabolism 73:239-247, 2001. (Pubitemid 32709614)
    • (2001) Molecular Genetics and Metabolism , vol.73 , Issue.3 , pp. 239-247
    • Xiong, M.1    Li, W.2    Zhao, J.3    Jin, L.4    Boerwinkle, E.5
  • 15
    • 4744364173 scopus 로고    scopus 로고
    • Cancer classification and prediction using logistic regression with Bayesian gene selection
    • DOI 10.1016/j.jbi.2004.07.009, PII S1532046404000772, Biomedical Machine Learning
    • Xiaobo Zhou, Xiaodong Wang, Edward R Dougherty, A Bayesian approach to nonlinear probit gene selection and classification, J Franklin Inst 341:137-156, 2004. (Pubitemid 39311063)
    • (2004) Journal of Biomedical Informatics , vol.37 , Issue.4 , pp. 249-259
    • Zhou, X.1    Liu, K.-Y.2    Wong, S.T.C.3
  • 16
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • Academic Press, New York
    • Wold H, Estimation of principal components and related models by iterative least squares, Multivariate Analysis 391-420, Academic Press, New York, 1966.
    • (1966) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 17
    • 0032720502 scopus 로고    scopus 로고
    • Pattern recognition of soil samples based on the microbial fatty acid contents
    • Song XH, Hopke PK, Pattern recognition of soil samples based on the microbial fatty acid contents, Environ Sci Technol 33:3524-3530, 1999.
    • (1999) Environ Sci Technol , vol.33 , pp. 3524-3530
    • Song, X.H.1    Hopke, P.K.2
  • 18
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker M, Rayens W, Partial least squares for discrimination, J Chemom 17:166-173, 2003.
    • (2003) J Chemom , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 19
    • 3142537293 scopus 로고    scopus 로고
    • Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models
    • Yongxi Tan, Leming Shi, Weida Tong, Gene Hwang GT, Charles Wang, Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models, Comput Biol Chem 28:235-244, 2004.
    • (2004) Comput Biol Chem , vol.28 , pp. 235-244
    • Tan, Y.1    Shi, L.2    Tong, W.3    Gene Hwang, G.T.4    Wang, C.5
  • 21
    • 0026578543 scopus 로고
    • Nonlinear partial least squares modeling. II. Spline inner relation
    • Wold S, Nonlinear partial least squares modeling. II. Spline inner relation, Chemometrics and Intelligent Laboratory Systems 14(1-3):71-84, 1992.
    • (1992) Chemometrics and Intelligent Laboratory Systems , vol.14 , Issue.1-3 , pp. 71-84
    • Wold, S.1
  • 22
    • 85162673553 scopus 로고
    • The kernel algorithm for PLS
    • Lindgren Fredrik, Geladi Paul, Wold Svante, The kernel algorithm for PLS, J Chemom 7:45-59, 1993.
    • (1993) J Chemom , vol.7 , pp. 45-59
    • Fredrik, L.1    Paul, G.2    Svante, W.3
  • 23
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing Kernel Hilbert space
    • Rosipal R, Trejo LJ, Kernel partial least squares regression in reproducing Kernel Hilbert space, J Mach Learn Res 2:97-123, 2001.
    • (2001) J Mach Learn Res , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 26
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction
    • DOI 10.1093/bioinformatics/bth383
    • Nathalie Pochet, Frank De Smet, Johan AK Suykens, Bart LR De Moor, Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction, Bioinformatics 20:3185-3195, 2004. (Pubitemid 39619208)
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3185-3195
    • Pochet, N.1    De Smet, F.2    Suykens, J.A.K.3    De Moor, B.L.R.4
  • 28
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D, Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics 16(10):906-914, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 29
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen DV, Rocke DM, Tumor classification by partial least squares using microarray gene expression data, Bioinformatics 18(1):39-50, 2002. (Pubitemid 34145030)
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 30
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan AC, Gilbert D, Ensemble machine learning on gene expression data for cancer classification, Appl Bioinformatics 2(3 Suppl):S75-83, 2003.
    • (2003) Appl Bioinformatics , vol.2 , Issue.3 SUPPL.
    • Tan, A.C.1    Gilbert, D.2
  • 31
    • 3242772912 scopus 로고    scopus 로고
    • Application of probabilistic neural networks to the class prediction of leukemia and embryonal tumor of central nervous system
    • Huang CJ, Liao WC, Application of probabilistic neural networks to the class prediction of leukemia and embryonal tumor of central nervous system, Neural Process Lett 19:211-226, 2004.
    • (2004) Neural Process Lett , vol.19 , pp. 211-226
    • Huang, C.J.1    Liao, W.C.2
  • 33
    • 1842559888 scopus 로고    scopus 로고
    • Optimization models for cancer classification: Extracting gene interaction information from microarray expression data
    • DOI 10.1093/bioinformatics/btg462
    • Antonov AV, Tetko IV, Mader MT, Budczies J, Mewes HW, Optimization models for cancer classification: Extracting gene interaction information from microarray expression data, Bioinformatics 20 (5): 644-652, 2004. (Pubitemid 38443818)
    • (2004) Bioinformatics , vol.20 , Issue.5 , pp. 644-652
    • Antonov, A.V.1    Tetko, I.V.2    Mader, M.T.3    Budczies, J.4    Mewes, H.W.5
  • 34
    • 34247228608 scopus 로고    scopus 로고
    • Reduct generation and classification of gene expression data
    • DOI 10.1109/ICHIT.2006.253568, 4021171, Proceedings - 2006 International Conference on Hybrid Information Technology, ICHIT 2006
    • Momin BF, Mitra S, Reduct generation and classification of gene expression data, in Proceedings of the First International Conference on Hybrid Information Technology: 9-11 November 2006; Jeju Island, edited by: Szczuka MS, Howard D, Slezak D, Kim HK, Kim TH, Ko IS, Lee G, Sloot PMA. Springer, Berlin/Heidelberg, 699-708, 2006. (Pubitemid 46604157)
    • (2006) Proceedings - 2006 International Conference on Hybrid Information Technology, ICHIT 2006 , vol.1 , pp. 699-708
    • Momin, B.F.1    Mitra, S.2    Gupta, R.D.3
  • 36
    • 29844457781 scopus 로고    scopus 로고
    • Mining top-k covering rule groups for gene expression data
    • DOI 10.1145/1066157.1066234, SIGMOD 2005: Proceedings of the ACM SIGMOD International Conference on Management of Data
    • Cong G, Tan K-L, Tung A, Xu X, Mining top-k covering rule groups for gene expression data, in Proceedings of the 24th ACM SIGMOD International Conference on Management of Data: 14-16 June 2005, Baltimore, edited by: Ozcan F. Association for Computing Machinery, 670-681, 2005. (Pubitemid 43038966)
    • (2005) Proceedings of the ACM SIGMOD International Conference on Management of Data , pp. 670-681
    • Cong, G.1    Tan, K.-L.2    Tung, A.3    Xu, X.4
  • 37
    • 35248899494 scopus 로고    scopus 로고
    • Using rules to analyse bio-medical data: A comparison between C4.5 and PCL
    • Advances in Web-Age Information Management
    • Li J, Wong L, Using rules to analyse bio-medical data: A comparison between C4.5 and PCL, in Proceeding of the Fourth International Conference on Web-Age Information Management: 17-19 August 2003, Chengdu, edited by: Dong G, Tang C, Wang W., Springer, Berlin/Heidelberg, 254-265, 2003. (Pubitemid 36996279)
    • (2003) Proceeding of the Fourth International Conference on Web-Age Information Management: 17-19 August 2003 , Issue.2762 , pp. 254-265
    • Li, J.1    Wong, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.