메뉴 건너뛰기




Volumn 24, Issue 1, 2011, Pages 109-120

Adaptive support vector regression for UAV flight control

Author keywords

Feedback linearization; Support vector regression; Unmanned aerial vehicle

Indexed keywords

ADAPTIVE CONTROL; ADAPTIVE CONTROLLERS; ADAPTIVE SUPPORT; ERROR DYNAMICS; FLIGHT CONTROL; GLOBAL SOLUTIONS; INPUT-OUTPUT; INVERSE DYNAMIC MODEL; INVERSION ERRORS; NUMERICAL SIMULATION; ON-LINE ADAPTATION; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; UNIFORMLY ULTIMATELY BOUNDED;

EID: 78649656565     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2010.09.011     Document Type: Article
Times cited : (34)

References (27)
  • 1
    • 80052866161 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine lenarning. In: Proceedings of the neural information processing systems conference.
    • Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental support vector machine lenarning. In: Proceedings of the neural information processing systems conference. (pp. 409-423).
    • (2001) , pp. 409-423
    • Cauwenberghs, G.1    Poggio, T.2
  • 2
    • 78649680595 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines. Software available at
    • Chang, C., & Lin, C. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
    • (2001)
    • Chang, C.1    Lin, C.2
  • 3
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of svm parameters and noise estimation for svm regression
    • Cherkassky V., Ma Y. Practical selection of svm parameters and noise estimation for svm regression. Neural Networks 2004, 17:113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 5
    • 27744532503 scopus 로고    scopus 로고
    • The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a cmac neural network
    • Harmon F.G., Frank A.A., Joshi S.S. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a cmac neural network. Neural Networks 2005, 18:772-780.
    • (2005) Neural Networks , vol.18 , pp. 772-780
    • Harmon, F.G.1    Frank, A.A.2    Joshi, S.S.3
  • 11
    • 13844276862 scopus 로고    scopus 로고
    • Application of system identification to aircraft at nasa langley research center
    • Morelli E.A., Klein V. Application of system identification to aircraft at nasa langley research center. Journal of Aircraft 2005, 42:12-25.
    • (2005) Journal of Aircraft , vol.42 , pp. 12-25
    • Morelli, E.A.1    Klein, V.2
  • 13
    • 14344256348 scopus 로고    scopus 로고
    • An overview of emerging results in cooperative uav control. In: Proceeding of IEEE conf. decision and control.
    • Ryan, A., Zennaro, M., Howell, A., Sengupta, R., & Hedrick, J. K. (2004). An overview of emerging results in cooperative uav control. In: Proceeding of IEEE conf. decision and control. (pp. 602-607).
    • (2004) , pp. 602-607
    • Ryan, A.1    Zennaro, M.2    Howell, A.3    Sengupta, R.4    Hedrick, J.K.5
  • 15
    • 50249155939 scopus 로고    scopus 로고
    • Shrinking the tube: a new support vector regression algorithm. In: Proceedings of the neural information processing systems conference.
    • Schölkopf, B., Bartlett, P., Smola, A. J., & Williamson, R. (1998). Shrinking the tube: a new support vector regression algorithm. In: Proceedings of the neural information processing systems conference. (pp. 330-336).
    • (1998) , pp. 330-336
    • Schölkopf, B.1    Bartlett, P.2    Smola, A.J.3    Williamson, R.4
  • 17
    • 33646055132 scopus 로고    scopus 로고
    • Nonlinear discrete-time reconfigurable flight control law using neural networks
    • Shin D., Kim Y. Nonlinear discrete-time reconfigurable flight control law using neural networks. IEEE Transactions on Control Systems Technology 2006, 14:408-422.
    • (2006) IEEE Transactions on Control Systems Technology , vol.14 , pp. 408-422
    • Shin, D.1    Kim, Y.2
  • 18
    • 78649672256 scopus 로고    scopus 로고
    • A tutorial on support vector regression. NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, London.
    • Smola, A. J., & Schölkopf, B. (1998). A tutorial on support vector regression. NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, London.
    • (1998)
    • Smola, A.J.1    Schölkopf, B.2
  • 20
    • 0035181296 scopus 로고    scopus 로고
    • Optimal control by least squares support vector machines
    • Suykens J.A.K., Vandewalle J., Moor B.D. Optimal control by least squares support vector machines. Neural Networks 2001, 14:23-35.
    • (2001) Neural Networks , vol.14 , pp. 23-35
    • Suykens, J.A.K.1    Vandewalle, J.2    Moor, B.D.3
  • 21
    • 0032191761 scopus 로고    scopus 로고
    • Neural network based control schemes for flexible-link manipulators: simulations and experiments
    • Talebi H.A., Khorasani K., Patel R.V. Neural network based control schemes for flexible-link manipulators: simulations and experiments. Neural Networks 1998, 11:1357-1377.
    • (1998) Neural Networks , vol.11 , pp. 1357-1377
    • Talebi, H.A.1    Khorasani, K.2    Patel, R.V.3
  • 24
    • 33845972990 scopus 로고    scopus 로고
    • Online svm regression algorithm-based adaptive inverse control
    • Wang H., Pi D., Sun Y. Online svm regression algorithm-based adaptive inverse control. Neurocomputing 2007, 70:952-959.
    • (2007) Neurocomputing , vol.70 , pp. 952-959
    • Wang, H.1    Pi, D.2    Sun, Y.3
  • 25
    • 34247580190 scopus 로고    scopus 로고
    • Support vector regression model predictive control on a hvac plant
    • Xi X.C., Poo A.N., Chou S.K. Support vector regression model predictive control on a hvac plant. Control Engineering Practice 2007, 15:897-908.
    • (2007) Control Engineering Practice , vol.15 , pp. 897-908
    • Xi, X.C.1    Poo, A.N.2    Chou, S.K.3
  • 26
    • 0025901473 scopus 로고
    • Learning control using neural networks. In: Proceedings of IEEE conf. robotics and automation.
    • Yabuta, T., & Yamada, T. (1991). Learning control using neural networks. In: Proceedings of IEEE conf. robotics and automation. (pp. 740-745).
    • (1991) , pp. 740-745
    • Yabuta, T.1    Yamada, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.