메뉴 건너뛰기




Volumn 16, Issue 17, 2006, Pages 843-862

Support vector machines-based generalized predictive control

Author keywords

Generalized predictive control; Modelling and prediction; Support vector machines

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; GLOBAL OPTIMIZATION; MATHEMATICAL MODELS; NONLINEAR CONTROL SYSTEMS; PROBLEM SOLVING; REGRESSION ANALYSIS;

EID: 33751209792     PISSN: 10498923     EISSN: 10991239     Source Type: Journal    
DOI: 10.1002/rnc.1094     Document Type: Article
Times cited : (69)

References (46)
  • 1
    • 0023310961 scopus 로고
    • Generalized predictive control - Part 1: The basic algorithm
    • Clarke DW, Mohtadi C, Tuffs PC. Generalized predictive control - part 1: the basic algorithm. Automatica 1987; 23:137-148.
    • (1987) Automatica , vol.23 , pp. 137-148
    • Clarke, D.W.1    Mohtadi, C.2    Tuffs, P.C.3
  • 2
    • 0023311208 scopus 로고
    • Generalized predictive control - Part 2: The basic algorithm
    • Clarke DW, Mohtadi C, Tuffs PC. Generalized predictive control - part 2: the basic algorithm. Automatica 1987; 23:149-163.
    • (1987) Automatica , vol.23 , pp. 149-163
    • Clarke, D.W.1    Mohtadi, C.2    Tuffs, P.C.3
  • 4
    • 0000885451 scopus 로고
    • Properties of generalized predictive control
    • Clurke DW, Mohtadi C. Properties of generalized predictive control. Automatica 1989; 25(6):859-875.
    • (1989) Automatica , vol.25 , Issue.6 , pp. 859-875
    • Clurke, D.W.1    Mohtadi, C.2
  • 5
    • 0027543146 scopus 로고
    • Constrained generalized predictive control
    • Camacho EF. Constrained generalized predictive control. IEEE Transactions on Automatic Control 1993; 38(2):327-332.
    • (1993) IEEE Transactions on Automatic Control , vol.38 , Issue.2 , pp. 327-332
    • Camacho, E.F.1
  • 6
    • 0003290232 scopus 로고
    • Industrial applications of model-based predictive control
    • Richalet J. Industrial applications of model-based predictive control. Automatica 1993; 29:1251-1274.
    • (1993) Automatica , vol.29 , pp. 1251-1274
    • Richalet, J.1
  • 7
    • 0023996517 scopus 로고
    • Application of generalized predictive control to industrial processes
    • Clarke DW. Application of generalized predictive control to industrial processes. IEEE Control Systems Magazine 1988; 122:49-55.
    • (1988) IEEE Control Systems Magazine , vol.122 , pp. 49-55
    • Clarke, D.W.1
  • 8
    • 0041802770 scopus 로고    scopus 로고
    • A survey of industrial model predictive control technology
    • Qin SJ, Badgwell TA. A survey of industrial model predictive control technology. Control Engineering Practice 2003; 11:733-764.
    • (2003) Control Engineering Practice , vol.11 , pp. 733-764
    • Qin, S.J.1    Badgwell, T.A.2
  • 9
    • 0018015327 scopus 로고
    • Model predictive heuristic control: Applications to an industrial process
    • Richalet JA, Rault A, Testud JL, Papon J. Model predictive heuristic control: applications to an industrial process. Automatica 1978; 14:413-428.
    • (1978) Automatica , vol.14 , pp. 413-428
    • Richalet, J.A.1    Rault, A.2    Testud, J.L.3    Papon, J.4
  • 16
    • 0032884372 scopus 로고    scopus 로고
    • Implementation of neural network based nonlinear predictive control
    • Sørensen PH, Nørgaard M, Ravn O, Poulsen NK. Implementation of neural network based nonlinear predictive control. Neurocomputing 1999; 28:37-51.
    • (1999) Neurocomputing , vol.28 , pp. 37-51
    • Sørensen, P.H.1    Nørgaard, M.2    Ravn, O.3    Poulsen, N.K.4
  • 18
    • 5144222836 scopus 로고    scopus 로고
    • Multi-model predictive control based on the Takagi-Sugeno fuzzy models: A case study
    • Li N, Li SY, Xi YG. Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study. Information Sciences 2004; 165:247-263.
    • (2004) Information Sciences , vol.165 , pp. 247-263
    • Li, N.1    Li, S.Y.2    Xi, Y.G.3
  • 20
    • 0032762147 scopus 로고    scopus 로고
    • Generalized predictive control using a neuro-fuzzy model
    • Hu JQ, Rose E. Generalized predictive control using a neuro-fuzzy model. International Journal of Systems Science 1999; 30:117-122.
    • (1999) International Journal of Systems Science , vol.30 , pp. 117-122
    • Hu, J.Q.1    Rose, E.2
  • 21
    • 0042864639 scopus 로고    scopus 로고
    • Fuzzy model predictive control of non-linear processes using genetic algorithms
    • Sarimveis H, Bafas G. Fuzzy model predictive control of non-linear processes using genetic algorithms. Fuzzy Sets and Systems 2003; 139:59-80.
    • (2003) Fuzzy Sets and Systems , vol.139 , pp. 59-80
    • Sarimveis, H.1    Bafas, G.2
  • 25
    • 0002660750 scopus 로고    scopus 로고
    • The support vector method of function estimation
    • Kluwer Academic Publishers: Boston
    • Vapnik V. The support vector method of function estimation. Nonlinear Modeling Advanced Black Box Techniques. Kluwer Academic Publishers: Boston, 1998.
    • (1998) Nonlinear Modeling Advanced Black Box Techniques
    • Vapnik, V.1
  • 29
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens JAK, De Brabanter J, Lukas L, Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 2002; 48:85-105.
    • (2002) Neurocomputing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 30
    • 19044379951 scopus 로고    scopus 로고
    • New predictive control algorithms based on least squares support vector machines
    • Liu B, Su H, Chu J. New predictive control algorithms based on least squares support vector machines. Journal of Zhejiang University Science 2005; 6(A5):440-446.
    • (2005) Journal of Zhejiang University Science , vol.6 , Issue.A5 , pp. 440-446
    • Liu, B.1    Su, H.2    Chu, J.3
  • 33
    • 0035181296 scopus 로고    scopus 로고
    • Optimal control by least squares support vector machines
    • Suykens JAK, Vandewalle J, De Moor B. Optimal control by least squares support vector machines. Neural Networks 2001; 14:23-35.
    • (2001) Neural Networks , vol.14 , pp. 23-35
    • Suykens, J.A.K.1    Vandewalle, J.2    De Moor, B.3
  • 34
    • 0003982971 scopus 로고    scopus 로고
    • Springer Series in Operation Research. Springer: New York
    • Nocedal J, Wright SJ. Numerical Optimization. Springer Series in Operation Research. Springer: New York, 1999.
    • (1999) Numerical Optimization
    • Nocedal, J.1    Wright, S.J.2
  • 36
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Royal Holloway College, University of London, London
    • Smola AJ, Schölkopf B. A tutorial on support vector regression. NeuroCOLT Technical Report No. NC-TR-9S-030, Royal Holloway College, University of London, London, 1998.
    • (1998) NeuroCOLT Technical Report No. NC-TR-9S-030
    • Smola, A.J.1    Schölkopf, B.2
  • 37
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for svm regression
    • Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for svm regression. Neural Networks 2004; 17:113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 39
    • 0038895405 scopus 로고    scopus 로고
    • Training v-support vector regression: Theory and algorithms
    • Chang CC, Lin CJ. Training v-Support Vector Regression: theory and algorithms. Neural Computation 2002; 14:1959-1977.
    • (2002) Neural Computation , vol.14 , pp. 1959-1977
    • Chang, C.C.1    Lin, C.J.2
  • 42
    • 0031139313 scopus 로고    scopus 로고
    • Nonlinear control structures based on embedded neural system models
    • Lightbody O, Irwin GW. Nonlinear control structures based on embedded neural system models. IEEE Transactions on Neural Networks 1997; 8:553-567.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , pp. 553-567
    • Lightbody, O.1    Irwin, G.W.2
  • 43
    • 0038927293 scopus 로고    scopus 로고
    • De Moor BLR (ed.). Department of Electrical Engineering, ESAT/SISTA, Belgium, [Used dataset: Continuous stirred tank reactor, Process Industry Systems, 98-002.]
    • De Moor BLR (ed.). DalSy: Database for the Identification of Systems, Department of Electrical Engineering, ESAT/SISTA, K.U. Leuven, Belgium, URL: http://www.esat.kuleuven.ac.be/sista/daisy/ [Used dataset: Continuous stirred tank reactor, Process Industry Systems, 98-002.]
    • DalSy: Database for the Identification of Systems
  • 44
    • 0033284562 scopus 로고    scopus 로고
    • Real-time adaptive control using neural generalized predictive control
    • San Diego, CA, U.S.A.
    • Haley PJ, Soloway D, Gold B. Real-time adaptive control using neural generalized predictive control. Proceedings of the American Control Conference, San Diego, CA, U.S.A., 1999; 4278-4282.
    • (1999) Proceedings of the American Control Conference , pp. 4278-4282
    • Haley, P.J.1    Soloway, D.2    Gold, B.3
  • 45
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • Flake GW, Lawrence S. Efficient SVM regression training with SMO. Machine Learning 2002; 46:271-290.
    • (2002) Machine Learning , vol.46 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 46
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma J, Theiler J, Perkins S. Accurate on-line support vector regression. Neural Computation 2003; 15:2683-2703.
    • (2003) Neural Computation , vol.15 , pp. 2683-2703
    • Ma, J.1    Theiler, J.2    Perkins, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.