-
1
-
-
0023310961
-
Generalized predictive control - Part 1: The basic algorithm
-
Clarke DW, Mohtadi C, Tuffs PC. Generalized predictive control - part 1: the basic algorithm. Automatica 1987; 23:137-148.
-
(1987)
Automatica
, vol.23
, pp. 137-148
-
-
Clarke, D.W.1
Mohtadi, C.2
Tuffs, P.C.3
-
2
-
-
0023311208
-
Generalized predictive control - Part 2: The basic algorithm
-
Clarke DW, Mohtadi C, Tuffs PC. Generalized predictive control - part 2: the basic algorithm. Automatica 1987; 23:149-163.
-
(1987)
Automatica
, vol.23
, pp. 149-163
-
-
Clarke, D.W.1
Mohtadi, C.2
Tuffs, P.C.3
-
4
-
-
0000885451
-
Properties of generalized predictive control
-
Clurke DW, Mohtadi C. Properties of generalized predictive control. Automatica 1989; 25(6):859-875.
-
(1989)
Automatica
, vol.25
, Issue.6
, pp. 859-875
-
-
Clurke, D.W.1
Mohtadi, C.2
-
5
-
-
0027543146
-
Constrained generalized predictive control
-
Camacho EF. Constrained generalized predictive control. IEEE Transactions on Automatic Control 1993; 38(2):327-332.
-
(1993)
IEEE Transactions on Automatic Control
, vol.38
, Issue.2
, pp. 327-332
-
-
Camacho, E.F.1
-
6
-
-
0003290232
-
Industrial applications of model-based predictive control
-
Richalet J. Industrial applications of model-based predictive control. Automatica 1993; 29:1251-1274.
-
(1993)
Automatica
, vol.29
, pp. 1251-1274
-
-
Richalet, J.1
-
7
-
-
0023996517
-
Application of generalized predictive control to industrial processes
-
Clarke DW. Application of generalized predictive control to industrial processes. IEEE Control Systems Magazine 1988; 122:49-55.
-
(1988)
IEEE Control Systems Magazine
, vol.122
, pp. 49-55
-
-
Clarke, D.W.1
-
8
-
-
0041802770
-
A survey of industrial model predictive control technology
-
Qin SJ, Badgwell TA. A survey of industrial model predictive control technology. Control Engineering Practice 2003; 11:733-764.
-
(2003)
Control Engineering Practice
, vol.11
, pp. 733-764
-
-
Qin, S.J.1
Badgwell, T.A.2
-
9
-
-
0018015327
-
Model predictive heuristic control: Applications to an industrial process
-
Richalet JA, Rault A, Testud JL, Papon J. Model predictive heuristic control: applications to an industrial process. Automatica 1978; 14:413-428.
-
(1978)
Automatica
, vol.14
, pp. 413-428
-
-
Richalet, J.A.1
Rault, A.2
Testud, J.L.3
Papon, J.4
-
13
-
-
0030369072
-
Neural generalized predictive control: A Newton-Raphson algorithm
-
Dearborn, MI, U.S.A.
-
Soloway D, Haley PJ. Neural generalized predictive control: a Newton-Raphson algorithm. Proceedings of the IEEE International Symposium on Intelligent Control, Dearborn, MI, U.S.A., 1996; 277-282.
-
(1996)
Proceedings of the IEEE International Symposium on Intelligent Control
, pp. 277-282
-
-
Soloway, D.1
Haley, P.J.2
-
18
-
-
5144222836
-
Multi-model predictive control based on the Takagi-Sugeno fuzzy models: A case study
-
Li N, Li SY, Xi YG. Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study. Information Sciences 2004; 165:247-263.
-
(2004)
Information Sciences
, vol.165
, pp. 247-263
-
-
Li, N.1
Li, S.Y.2
Xi, Y.G.3
-
20
-
-
0032762147
-
Generalized predictive control using a neuro-fuzzy model
-
Hu JQ, Rose E. Generalized predictive control using a neuro-fuzzy model. International Journal of Systems Science 1999; 30:117-122.
-
(1999)
International Journal of Systems Science
, vol.30
, pp. 117-122
-
-
Hu, J.Q.1
Rose, E.2
-
21
-
-
0042864639
-
Fuzzy model predictive control of non-linear processes using genetic algorithms
-
Sarimveis H, Bafas G. Fuzzy model predictive control of non-linear processes using genetic algorithms. Fuzzy Sets and Systems 2003; 139:59-80.
-
(2003)
Fuzzy Sets and Systems
, vol.139
, pp. 59-80
-
-
Sarimveis, H.1
Bafas, G.2
-
25
-
-
0002660750
-
The support vector method of function estimation
-
Kluwer Academic Publishers: Boston
-
Vapnik V. The support vector method of function estimation. Nonlinear Modeling Advanced Black Box Techniques. Kluwer Academic Publishers: Boston, 1998.
-
(1998)
Nonlinear Modeling Advanced Black Box Techniques
-
-
Vapnik, V.1
-
29
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
Suykens JAK, De Brabanter J, Lukas L, Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 2002; 48:85-105.
-
(2002)
Neurocomputing
, vol.48
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
30
-
-
19044379951
-
New predictive control algorithms based on least squares support vector machines
-
Liu B, Su H, Chu J. New predictive control algorithms based on least squares support vector machines. Journal of Zhejiang University Science 2005; 6(A5):440-446.
-
(2005)
Journal of Zhejiang University Science
, vol.6
, Issue.A5
, pp. 440-446
-
-
Liu, B.1
Su, H.2
Chu, J.3
-
31
-
-
0037695279
-
-
World Scientific: Singapore
-
Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J. Least Squares Support Vector Machines. World Scientific: Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
34
-
-
0003982971
-
-
Springer Series in Operation Research. Springer: New York
-
Nocedal J, Wright SJ. Numerical Optimization. Springer Series in Operation Research. Springer: New York, 1999.
-
(1999)
Numerical Optimization
-
-
Nocedal, J.1
Wright, S.J.2
-
36
-
-
0003401675
-
A tutorial on support vector regression
-
Royal Holloway College, University of London, London
-
Smola AJ, Schölkopf B. A tutorial on support vector regression. NeuroCOLT Technical Report No. NC-TR-9S-030, Royal Holloway College, University of London, London, 1998.
-
(1998)
NeuroCOLT Technical Report No. NC-TR-9S-030
-
-
Smola, A.J.1
Schölkopf, B.2
-
37
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for svm regression
-
Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for svm regression. Neural Networks 2004; 17:113-126.
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
38
-
-
50249155939
-
Shrinking the tube: U new support vector regression algorithm
-
Denver, CO. U.S.A.
-
Schölkopf B, Bartlett P. Smolu A, Williamson R. Shrinking the tube: u new support vector regression algorithm. Proceedings of the NIPS Conference, Denver, CO. U.S.A., 1998; 330-336.
-
(1998)
Proceedings of the NIPS Conference
, pp. 330-336
-
-
Schölkopf, B.1
Bartlett, P.2
Smolu, A.3
Williamson, R.4
-
39
-
-
0038895405
-
Training v-support vector regression: Theory and algorithms
-
Chang CC, Lin CJ. Training v-Support Vector Regression: theory and algorithms. Neural Computation 2002; 14:1959-1977.
-
(2002)
Neural Computation
, vol.14
, pp. 1959-1977
-
-
Chang, C.C.1
Lin, C.J.2
-
42
-
-
0031139313
-
Nonlinear control structures based on embedded neural system models
-
Lightbody O, Irwin GW. Nonlinear control structures based on embedded neural system models. IEEE Transactions on Neural Networks 1997; 8:553-567.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, pp. 553-567
-
-
Lightbody, O.1
Irwin, G.W.2
-
43
-
-
0038927293
-
-
De Moor BLR (ed.). Department of Electrical Engineering, ESAT/SISTA, Belgium, [Used dataset: Continuous stirred tank reactor, Process Industry Systems, 98-002.]
-
De Moor BLR (ed.). DalSy: Database for the Identification of Systems, Department of Electrical Engineering, ESAT/SISTA, K.U. Leuven, Belgium, URL: http://www.esat.kuleuven.ac.be/sista/daisy/ [Used dataset: Continuous stirred tank reactor, Process Industry Systems, 98-002.]
-
DalSy: Database for the Identification of Systems
-
-
-
44
-
-
0033284562
-
Real-time adaptive control using neural generalized predictive control
-
San Diego, CA, U.S.A.
-
Haley PJ, Soloway D, Gold B. Real-time adaptive control using neural generalized predictive control. Proceedings of the American Control Conference, San Diego, CA, U.S.A., 1999; 4278-4282.
-
(1999)
Proceedings of the American Control Conference
, pp. 4278-4282
-
-
Haley, P.J.1
Soloway, D.2
Gold, B.3
-
45
-
-
0036160859
-
Efficient SVM regression training with SMO
-
Flake GW, Lawrence S. Efficient SVM regression training with SMO. Machine Learning 2002; 46:271-290.
-
(2002)
Machine Learning
, vol.46
, pp. 271-290
-
-
Flake, G.W.1
Lawrence, S.2
-
46
-
-
0141765796
-
Accurate on-line support vector regression
-
Ma J, Theiler J, Perkins S. Accurate on-line support vector regression. Neural Computation 2003; 15:2683-2703.
-
(2003)
Neural Computation
, vol.15
, pp. 2683-2703
-
-
Ma, J.1
Theiler, J.2
Perkins, S.3
|