-
2
-
-
26944461753
-
Finding clusters of different sizes, shapes and densities in noisy, high dimensional data
-
L. Ertoz, M. Steinbach, V. Kumar, Finding clusters of different sizes, shapes and densities in noisy, high dimensional data, in: SIAM International Conference on Data Mining, 2003.
-
(2003)
SIAM International Conference on Data Mining
-
-
Ertoz, L.1
Steinbach, M.2
Kumar, V.3
-
3
-
-
0032686723
-
CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
-
G. Karypis, J. Han, V. Kumar, CHAMELEON: a hierarchical clustering algorithm using dynamic modeling, IEEE Computer 32 (8) (1999) 68-75.
-
(1999)
IEEE Computer
, vol.32
, Issue.8
, pp. 68-75
-
-
Karypis, G.1
Han, J.2
Kumar, V.3
-
4
-
-
0041816472
-
Clustering datasets containing clusters of various densities
-
Y. Zhao, S. Mei, X. Fan, S. Junde, Clustering datasets containing clusters of various densities, Journal of Beijing University of Posts and Telecommunications 26 (2) (2003) 42-47.
-
(2003)
Journal of Beijing University of Posts and Telecommunications
, vol.26
, Issue.2
, pp. 42-47
-
-
Zhao, Y.1
Mei, S.2
Fan, X.3
Junde, S.4
-
5
-
-
0347172110
-
OPTICS: Ordering Points to Identify the Clustering Structure
-
M. Ankerst, M. M. Breuing, H. P. Kriegel, J. Sander, OPTICS: ordering points to identify the clustering structure, in: ACMSIGMOD, 1999, pp. 49-60. (Pubitemid 129597323)
-
(1999)
SIGMOD Record (ACM Special Interest Group on Management of Data)
, vol.28
, Issue.2
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.-P.3
Sander, J.4
-
6
-
-
26944448939
-
A neighborhood-based clustering algorithm
-
Springer Press, Hanoi
-
S. Zhou, Y. Zhao, J. Guan, Z. Huang, A neighborhood-based clustering algorithm, in: Ninth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer Press, Hanoi, 2005, pp. 361-371.
-
(2005)
Ninth Pacific-Asia Conference on Knowledge Discovery and Data Mining
, pp. 361-371
-
-
Zhou, S.1
Zhao, Y.2
Guan, J.3
Huang, Z.4
-
7
-
-
33744919320
-
An approach to find embedded clusters using density based techniques
-
DOI 10.1007/11604655-59, Distributed Computing and Internet Technology - Second International Conference, ICDCIT 2005, Proceedings
-
S. Roy, D. K. Bhattacharyya, An approach to find embedded clusters using density based techniques, in: Proceedings of the ICDCIT, Lecture Notes in Computer Science, vol. 3816, 2005, pp. 523-535. (Pubitemid 43846722)
-
(2005)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3816
, pp. 523-535
-
-
Roy, S.1
Bhattacharyya, D.K.2
-
8
-
-
34347333289
-
A local-density based spatial clustering algorithm with noise
-
DOI 10.1016/j.is.2006.10.006, PII S0306437906000871
-
L. Duan, L. Xu, F. Guo, J. Lee, B. Yan, A local-density based spatial clustering algorithm with noise, Information Systems 32 (2007) 978-986. (Pubitemid 47017576)
-
(2007)
Information Systems
, vol.32
, Issue.7
, pp. 978-986
-
-
Duan, L.1
Xu, L.2
Guo, F.3
Lee, J.4
Yan, B.5
-
9
-
-
34547519334
-
A grid-based density-confidence-interval clustering algorithm for multi-density dataset in large spatial database
-
S. Gao, Y. Xia, A grid-based density-confidence-interval clustering algorithm for multi-density dataset in large spatial database, in: International Conference on Intelligent Systems Design and Applications, vol. 1, 2006, pp. 713-717.
-
(2006)
International Conference on Intelligent Systems Design and Applications
, vol.1
, pp. 713-717
-
-
Gao, S.1
Xia, Y.2
-
10
-
-
58149087292
-
GMDBSCAN: Multi-density DBSCAN cluster based on grid
-
X. Chen, Y. Min, Y. Zhao, P. Wang, GMDBSCAN: multi-density DBSCAN cluster based on grid, in: IEEE International Conference on E-Business Engineering, 2008, pp. 780-783.
-
(2008)
IEEE International Conference on E-Business Engineering
, pp. 780-783
-
-
Chen, X.1
Min, Y.2
Zhao, Y.3
Wang, P.4
-
11
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the ACM SIGMOD 2000 International Conference on Management of Data, 2000, pp. 93-104.
-
(2000)
Proceedings of the ACM SIGMOD 2000 International Conference on Management of Data
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
12
-
-
52949101047
-
Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters
-
M. Li, M. K. Ng, Y. M. Cheung, Z. Huang, Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters, IEEE Transaction on Knowledge and Engineering 20 (11) (2008) 1519-1534.
-
(2008)
IEEE Transaction on Knowledge and Engineering
, vol.20
, Issue.11
, pp. 1519-1534
-
-
Li, M.1
Ng, M.K.2
Cheung, Y.M.3
Huang, Z.4
-
13
-
-
4544367326
-
FCM-based model selection algorithms for determining the number of clusters
-
H. Sun, S. Wang, Q. Jiang, FCM-based model selection algorithms for determining the number of clusters, Pattern Recognition 37 (2004) 2027-2037.
-
(2004)
Pattern Recognition
, vol.37
, pp. 2027-2037
-
-
Sun, H.1
Wang, S.2
Jiang, Q.3
-
15
-
-
84885969802
-
Omega: A general formulation of the rand index of cluster recovery suitable for non-disjoint solutions
-
L. M. Collins, C. W. Dent, Omega: a general formulation of the rand index of cluster recovery suitable for non-disjoint solutions, Multivariate Behavioral Research 23 (1988) 231-242.
-
(1988)
Multivariate Behavioral Research
, vol.23
, pp. 231-242
-
-
Collins, L.M.1
Dent, C.W.2
-
16
-
-
0000550189
-
A density-based algorithm for discovering clusters in large spatial database with noise
-
Montreal, Canada, August
-
E. Martin, K. Hans-Peter, S. Jorg, X. Xu, A density-based algorithm for discovering clusters in large spatial database with noise, in: International Conference on Knowledge Discovery in Databases and Data Mining, Montreal, Canada, August 1995.
-
(1995)
International Conference on Knowledge Discovery in Databases and Data Mining
-
-
Martin, E.1
Hans-Peter, K.2
Jorg, S.3
Xu, X.4
-
18
-
-
0030157145
-
BIRCH: An Efficient Data Clustering Method for Very Large Databases
-
T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large database, in: Proceedings of the ACM SIGMOD Conference on Management of Data, 1996, pp. 103-114. (Pubitemid 126440760)
-
(1996)
SIGMOD Record (ACM Special Interest Group on Management of Data)
, vol.25
, Issue.2
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
19
-
-
0032091595
-
CURE: An efficient clustering algorithm for large databases
-
S. Guha, R. Rastogi, K. Shim, CURE: an efficient clustering algorithm for large database, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1998, pp. 73-84. (Pubitemid 128655958)
-
(1998)
SIGMOD Record
, vol.27
, Issue.2
, pp. 73-84
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
20
-
-
0000742931
-
A neural-gas network learns topologies
-
T. Martinetz, K. Schulten, A neural-gas network learns topologies, Artificial Neural Network, vol. 1, 1991, pp. 397-402.
-
(1991)
Artificial Neural Network
, vol.1
, pp. 397-402
-
-
Martinetz, T.1
Schulten, K.2
-
21
-
-
10844255636
-
The evolving tree - A novel self-organizing network for data analysis
-
DOI 10.1007/s11063-004-2156-8
-
J. Pakkanen, J. Iivarinen, E. Oja, The evolving tree-a novel self-organizing network for data analysis, Neural Processing Letters 20 (2004) 199-211. (Pubitemid 40003525)
-
(2004)
Neural Processing Letters
, vol.20
, Issue.3
, pp. 199-211
-
-
Pakkanen, J.1
Iivarinen, J.2
Oja, E.3
-
23
-
-
14344262272
-
Automated hierarchical mixtures of probabilistic principal component analyzers
-
Banff, Canada, July
-
T. Su, J. Dy, Automated hierarchical mixtures of probabilistic principal component analyzers, in: Proceedings of the 21st International Conference on Machine Learning, no. 98 Banff, Canada, July 2004.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, vol.98
-
-
Su, T.1
Dy, J.2
-
24
-
-
33746597003
-
Large-scale data exploration with the hierarchically growing hyperbolic SOM
-
DOI 10.1016/j.neunet.2006.05.015, PII S0893608006000797
-
J. Ontrup, H. Ritter, Large scale data exploration with the hierarchical growing hyperbolic SOM, Neural Networks 19 (2006) 751-761. (Pubitemid 44148953)
-
(2006)
Neural Networks
, vol.19
, Issue.6-7
, pp. 751-761
-
-
Ontrup, J.1
Ritter, H.2
-
26
-
-
47049115023
-
Hyperbolic SOM-based clustering of DNA fragment features for taxonomic visualization and classification
-
DOI 10.1093/bioinformatics/btn257
-
C. Martin, N. Diaz, J. Ontrup, T. Nattkemper, Hyperbolic SOM-based clustering of DNA fragment features for taxonomic visualization and classification, Bioinformatics 24 (2008) 1568-1574. (Pubitemid 351966154)
-
(2008)
Bioinformatics
, vol.24
, Issue.14
, pp. 1568-1574
-
-
Martin, C.1
Diaz, N.N.2
Ontrup, J.3
Nattkemper, T.W.4
|