메뉴 건너뛰기




Volumn 74, Issue 1-3, 2010, Pages 354-361

Robustness quantification of recurrent neural network using unscented transform

Author keywords

Recurrent neural network; Robustness; Uncertainty propagation; Unscented transform

Indexed keywords

MODELING CAPABILITIES; NETWORK FAULTS; PARAMETRIC UNCERTAINTIES; PERFORMANCE LOSS; ROBUSTNESS; ROBUSTNESS MEASURES; SENSITIVITY MATRIX; UNCERTAINTY PROPAGATION; UNSCENTED TRANSFORM;

EID: 78649486392     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.03.010     Document Type: Article
Times cited : (5)

References (30)
  • 2
    • 84943257501 scopus 로고
    • Robustness of feedforward neural networks, in: Proceedings of the IEEE International Conference on Neural Networks,
    • C. Chiu, K. Mehrotra, et al., Robustness of feedforward neural networks, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 2, 1993, pp. 783-788.
    • (1993) , vol.2 , pp. 783-788
    • Chiu, C.1    Mehrotra, K.2
  • 3
    • 84951750694 scopus 로고    scopus 로고
    • A poly-time analysis of robustness in feedforward neural networks, in: Proceedings of the IEEE International Workshop on Virtual and Intelligent Measurement Systmes, Budapest, Hungary, May 19-20
    • C. Alippi, M. Milena, A poly-time analysis of robustness in feedforward neural networks, in: Proceedings of the IEEE International Workshop on Virtual and Intelligent Measurement Systmes, Budapest, Hungary, May 19-20, vol. 1, 2001, pp. 76-80.
    • (2001) , vol.1 , pp. 76-80
    • Alippi, C.1    Milena, M.2
  • 4
    • 10944262663 scopus 로고    scopus 로고
    • A training-time analysis of robustness in feed-forward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks
    • C. Alippi, D. Sam, et al., A training-time analysis of robustness in feed-forward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 4, 2004, pp. 2853-2858.
    • (2004) , vol.4 , pp. 2853-2858
    • Alippi, C.1    Sam, D.2
  • 5
    • 0029410181 scopus 로고
    • The effects of quantization on multilayer neural networks
    • Dundar G., Rose K. The effects of quantization on multilayer neural networks. IEEE Transactions on Neural Networks 1995, 6(6):1446-1451.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.6 , pp. 1446-1451
    • Dundar, G.1    Rose, K.2
  • 8
    • 34548182842 scopus 로고    scopus 로고
    • Robustness of radial basis functions
    • Eickhoff R., Ruckert U. Robustness of radial basis functions. Neurocomputing 2007, 70:2758-2767.
    • (2007) Neurocomputing , vol.70 , pp. 2758-2767
    • Eickhoff, R.1    Ruckert, U.2
  • 9
    • 2942665719 scopus 로고    scopus 로고
    • Influence on ANNs fault tolerance of binary errors introduced during training, in: Proceedings of the International Conference on Information and Communication Technologies: From Theory to Applications,
    • A. Assoum, M. Geagea, et al., Influence on ANNs fault tolerance of binary errors introduced during training, in: Proceedings of the International Conference on Information and Communication Technologies: From Theory to Applications, 2004, pp. 435-436.
    • (2004) , pp. 435-436
    • Assoum, A.1    Geagea, M.2
  • 10
    • 0029269583 scopus 로고
    • Complete and partial fault tolerance of feedforward neural nets
    • Phatak D.S., Koren I. Complete and partial fault tolerance of feedforward neural nets. IEEE Transactions on Neural Networks 1995, 6(2):446-456.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.2 , pp. 446-456
    • Phatak, D.S.1    Koren, I.2
  • 11
    • 37849186300 scopus 로고    scopus 로고
    • Evaluation of neural network robust reliability using information-gap theory
    • Pierce S.G., Haim Y.B., et al. Evaluation of neural network robust reliability using information-gap theory. IEEE Transactions on Neural Networks 2006, 17(6):1349-1361.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.6 , pp. 1349-1361
    • Pierce, S.G.1    Haim, Y.B.2
  • 12
    • 0027757243 scopus 로고
    • Robustness analysis of a class of neural networks, in: Circuits and Systems, Proceedings of the 36th Midwest Symposium
    • D. Liu, A.N. Michel, Robustness analysis of a class of neural networks, in: Circuits and Systems, Proceedings of the 36th Midwest Symposium, 1993, pp. 1077-1080.
    • (1993) , pp. 1077-1080
    • Liu, D.1    Michel, A.N.2
  • 13
    • 0342995801 scopus 로고    scopus 로고
    • Robustness analysis and design of a class of neural networks with sparse interconnecting structure
    • Liu D., Michel A.N. Robustness analysis and design of a class of neural networks with sparse interconnecting structure. Neurocomputing 1996, 12:59-76.
    • (1996) Neurocomputing , vol.12 , pp. 59-76
    • Liu, D.1    Michel, A.N.2
  • 15
    • 0025798263 scopus 로고
    • Robustness of an induction motor incipient fault detector neural network subject to small input perturbations, in: IEEE Proceedings of Southeastcon '91,
    • S.O. Yee, M.Y. Chow, Robustness of an induction motor incipient fault detector neural network subject to small input perturbations, in: IEEE Proceedings of Southeastcon '91, vol. 1, 1991, pp. 365-369.
    • (1991) , vol.1 , pp. 365-369
    • Yee, S.O.1    Chow, M.Y.2
  • 16
    • 0346933102 scopus 로고    scopus 로고
    • Robustness analysis of neural networks with an application to system identification
    • KrishnaKumar K., Nishta K. Robustness analysis of neural networks with an application to system identification. Journal of Guidance, Control and Dynamics 1999, 22:695-701.
    • (1999) Journal of Guidance, Control and Dynamics , vol.22 , pp. 695-701
    • KrishnaKumar, K.1    Nishta, K.2
  • 17
    • 0030370879 scopus 로고    scopus 로고
    • On Latin hypercube sampling
    • Loh W.L. On Latin hypercube sampling. Annals of Statistics 1996, 24(5):2058-2080.
    • (1996) Annals of Statistics , vol.24 , Issue.5 , pp. 2058-2080
    • Loh, W.L.1
  • 18
    • 0034427507 scopus 로고    scopus 로고
    • Nonlinear statistical modeling and yield estimation technique for use in Monte Carlo simulations
    • Swidzinski J.F., Kai C. Nonlinear statistical modeling and yield estimation technique for use in Monte Carlo simulations. IEEE Transactions on Microwave Theory and Techniques 2000, 48(12):2316-2324.
    • (2000) IEEE Transactions on Microwave Theory and Techniques , vol.48 , Issue.12 , pp. 2316-2324
    • Swidzinski, J.F.1    Kai, C.2
  • 19
    • 56749145641 scopus 로고    scopus 로고
    • Kalman Filtering and Neural Networks
    • Wiley Publishing, (Chapter 7), S. Haykin (Ed.)
    • Wan E.A., Merwe R.V.D. Kalman Filtering and Neural Networks. The Unscented Kalman Filter 2001, Wiley Publishing, (Chapter 7). S. Haykin (Ed.).
    • (2001) The Unscented Kalman Filter
    • Wan, E.A.1    Merwe, R.V.D.2
  • 22
    • 70449657835 scopus 로고    scopus 로고
    • Optimized recurrent neural network-based tool wear modeling in hard turning
    • Wang X., Huang Y. Optimized recurrent neural network-based tool wear modeling in hard turning. Transactions of NAMRI/SME 2009, 37:213-220.
    • (2009) Transactions of NAMRI/SME , vol.37 , pp. 213-220
    • Wang, X.1    Huang, Y.2
  • 23
    • 46249088112 scopus 로고    scopus 로고
    • Design of neural network-based estimator for tool wear modeling in hard turning
    • Wang X., Wang W., et al. Design of neural network-based estimator for tool wear modeling in hard turning. Journal of Intelligent Manufacturing 2008, 19(4):383-396.
    • (2008) Journal of Intelligent Manufacturing , vol.19 , Issue.4 , pp. 383-396
    • Wang, X.1    Wang, W.2
  • 24
    • 0025503558 scopus 로고
    • Back propagation through time: what it does and how to do it
    • Werbos P.J. Back propagation through time: what it does and how to do it. Proceedings of the IEEE 1990, 78(10):1550-1560.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 25
    • 0024945041 scopus 로고
    • Training feed forward networks with extended Kalman filter algorithm, in: Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Glasgow, Scotland, 23-26 May,
    • S. Singhal, L. Wu, Training feed forward networks with extended Kalman filter algorithm, in: Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Glasgow, Scotland, 23-26 May, 1989, pp. 1187-1190.
    • (1989) , pp. 1187-1190
    • Singhal, S.1    Wu, L.2
  • 26
    • 13844320129 scopus 로고    scopus 로고
    • Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method
    • Zhang L. Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method. IEEE Transactions on Power Systems 2005, 20(1):59-66.
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.1 , pp. 59-66
    • Zhang, L.1
  • 27
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • Puskorius G.V., Feldkamp L.A. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks 1994, 5:279-297.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 28
    • 0040527546 scopus 로고
    • Optimization of the neural net connectivity pattern using a backpropagation algorithm
    • KrishnaKumar K. Optimization of the neural net connectivity pattern using a backpropagation algorithm. Neurocomputing 1993, 5:273-286.
    • (1993) Neurocomputing , vol.5 , pp. 273-286
    • KrishnaKumar, K.1
  • 30
    • 0010010032 scopus 로고
    • A new bound for the euclidean norm of the difference between the least squares and the best linear unbiased estimators
    • Baksalary J.K., Kala R. A new bound for the euclidean norm of the difference between the least squares and the best linear unbiased estimators. The Annals of Statistics 1980, 3:679-681.
    • (1980) The Annals of Statistics , vol.3 , pp. 679-681
    • Baksalary, J.K.1    Kala, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.