-
1
-
-
0000817812
-
An estimate of the remainder in a combinatorial central limit theorem
-
BOLTHAUSEN, E. (1984). An estimate of the remainder in a combinatorial central limit theorem. Z. Wahrsck. Verw. Gebiete 66 379-386.
-
(1984)
Z. Wahrsck. Verw. Gebiete
, vol.66
, pp. 379-386
-
-
Bolthausen, E.1
-
2
-
-
21344480022
-
The rate of convergence for multivariate sampling statistics
-
BOLTHAUSEN, E. and GÖTZE, F. (1993). The rate of convergence for multivariate sampling statistics. Ann. Statist. 21 1692-1710.
-
(1993)
Ann. Statist.
, vol.21
, pp. 1692-1710
-
-
Bolthausen, E.1
Götze, F.2
-
3
-
-
0001241005
-
On a theorem of Hsu and Robbins
-
ERDÖS, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Statist. 20 286-291.
-
(1949)
Ann. Math. Statist.
, vol.20
, pp. 286-291
-
-
Erdös, P.1
-
4
-
-
0001354702
-
On the rate of convergence in the multivariate CLT
-
GÖTZE, F. (1991). On the rate of convergence in the multivariate CLT. Ann. Probab. 19 724-739.
-
(1991)
Ann. Probab.
, vol.19
, pp. 724-739
-
-
Götze, F.1
-
5
-
-
0010707466
-
p bound for the remainder in a combinatorial central limit theorem
-
p bound for the remainder in a combinatorial central limit theorem. Ann. Probab. 6 231-249.
-
(1978)
Ann. Probab.
, vol.6
, pp. 231-249
-
-
Ho, S.T.1
Chen, L.H.Y.2
-
6
-
-
0000680233
-
A combinatorial central limit theorem
-
HOEFFDING, W. (1951). A combinatorial central limit theorem. Ann. Math. Statist. 22 558-566.
-
(1951)
Ann. Math. Statist.
, vol.22
, pp. 558-566
-
-
Hoeffding, W.1
-
7
-
-
0001761982
-
The probability in the tail of a distribution
-
KATZ, M. (1963). The probability in the tail of a distribution. Ann. Math. Statist. 34 312-318.
-
(1963)
Ann. Math. Statist.
, vol.34
, pp. 312-318
-
-
Katz, M.1
-
9
-
-
0018468345
-
A comparison of three methods for selecting values of output variables in the analysis of output from a computer code
-
MCKAY, M. D., BECKMAN, R. J. and CONOVER, W. J. (1979). A comparison of three methods for selecting values of output variables in the analysis of output from a computer code. Technometrics 21 239-245.
-
(1979)
Technometrics
, vol.21
, pp. 239-245
-
-
Mckay, M.D.1
Beckman, R.J.2
Conover, W.J.3
-
10
-
-
84951511246
-
On the Hoeffding's combinatorial central limit theorem
-
MOTOO, M. (1957). On the Hoeffding's combinatorial central limit theorem. Ann. Inst. Statist. Math. 8 145-154.
-
(1957)
Ann. Inst. Statist. Math.
, vol.8
, pp. 145-154
-
-
Motoo, M.1
-
11
-
-
0000060427
-
Empirical likelihood ratio confidence intervals for a single functional
-
OWEN, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237-249.
-
(1988)
Biometrika
, vol.75
, pp. 237-249
-
-
Owen, A.B.1
-
12
-
-
0002552463
-
Empirical likelihood ratio confidence regions
-
OWEN, A. B. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90-120.
-
(1990)
Ann. Statist.
, vol.18
, pp. 90-120
-
-
Owen, A.B.1
-
13
-
-
0000732297
-
A central limit theorem for latin hypercube sampling
-
OWEN, A. B. (1992). A central limit theorem for Latin hypercube sampling. J. Roy. Statist. Soc. Ser. B 54 541-551.
-
(1992)
J. Roy. Statist. Soc. Ser. B
, vol.54
, pp. 541-551
-
-
Owen, A.B.1
-
15
-
-
0000457248
-
A bound for the error in the normal approximation to the distribution of a sum of dependent random variables
-
Univ. California Press, Berkeley
-
STEIN, C. M. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 2 583-602. Univ. California Press, Berkeley.
-
(1972)
Proc. Sixth Berkeley Symp. Math. Statist. Probab.
, vol.2
, pp. 583-602
-
-
Stein, C.M.1
-
17
-
-
0023349730
-
Large sample properties of simulations using latin hypercube sampling
-
STEIN, M. L. (1987). Large sample properties of simulations using Latin hypercube sampling. Technometrics 29 143-151.
-
(1987)
Technometrics
, vol.29
, pp. 143-151
-
-
Stein, M.L.1
-
18
-
-
0010517382
-
Remainder term estimate in a combinatorial central limit theorem
-
VON BAHR, B. (1976). Remainder term estimate in a combinatorial central limit theorem. Z. Wahrsch. Verw. Gebiete 35 131-139.
-
(1976)
Z. Wahrsch. Verw. Gebiete
, vol.35
, pp. 131-139
-
-
Von Bahr, B.1
|