메뉴 건너뛰기




Volumn 70, Issue 16-18, 2007, Pages 2758-2767

Robustness of radial basis functions

Author keywords

Equicontinuity; Nanoelectronics; Radial basis function; Robustness; Sensitivity analysis

Indexed keywords

MEAN SQUARE ERROR; NANOELECTRONICS; NEURAL NETWORKS; NEURONS; ROBUSTNESS (CONTROL SYSTEMS); SENSITIVITY ANALYSIS;

EID: 34548182842     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.04.012     Document Type: Article
Times cited : (22)

References (40)
  • 2
    • 0342546478 scopus 로고    scopus 로고
    • Feature screening using signal-to-noise ratios
    • Bauer Jr. K.W., Alsing S.G., and Greene K.A. Feature screening using signal-to-noise ratios. Neurocomputing 31 1-4 (2000) 29-44
    • (2000) Neurocomputing , vol.31 , Issue.1-4 , pp. 29-44
    • Bauer Jr., K.W.1    Alsing, S.G.2    Greene, K.A.3
  • 3
    • 34548181485 scopus 로고    scopus 로고
    • V. Beiu, U. Rückert, S. Roy, J. Nyathi, On nanoelectronic architectural challenges and solutions, in: Proceedings of IEEE Conference on Nanotechnology IEEE NANO 2004, Munich, Germany, 17-19 August 2005, IEEE.
  • 4
    • 0016664679 scopus 로고
    • Noise characteristics of current mirror sinks/sources
    • Bilotti A., and Mariani E. Noise characteristics of current mirror sinks/sources. IEEE J. Solid-State Circuits 10 6 (1975) 516-524
    • (1975) IEEE J. Solid-State Circuits , vol.10 , Issue.6 , pp. 516-524
    • Bilotti, A.1    Mariani, E.2
  • 5
    • 34548192377 scopus 로고    scopus 로고
    • G.R. Bolt, Investigating fault tolerance in artificial neural networks, Technical Report YCS 154, Computer Science Department, University of York, UK, March 1991.
  • 7
    • 9244245241 scopus 로고    scopus 로고
    • Feedforward sigmoidal networks-equicontinuity and fault-tolerance properties
    • Chandra P., and Singh Y. Feedforward sigmoidal networks-equicontinuity and fault-tolerance properties. IEEE Trans. Neural Networks 15 6 (2004) 1350-1366
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.6 , pp. 1350-1366
    • Chandra, P.1    Singh, Y.2
  • 8
    • 80052339383 scopus 로고
    • Some experiments on the recognition of speech, with one and two ears
    • Cherry E.C. Some experiments on the recognition of speech, with one and two ears. J. Acoust. Soc. Am. 25 (1953) 975-979
    • (1953) J. Acoust. Soc. Am. , vol.25 , pp. 975-979
    • Cherry, E.C.1
  • 10
    • 23044498618 scopus 로고    scopus 로고
    • Sensitivity to noise in bidirectional associative memory (bam)
    • Du S., Chen Z., Yuan Z., and Zhang X. Sensitivity to noise in bidirectional associative memory (bam). IEEE Trans. Neural Networks 16 4 (2005) 887-898
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.4 , pp. 887-898
    • Du, S.1    Chen, Z.2    Yuan, Z.3    Zhang, X.4
  • 11
    • 33646257322 scopus 로고    scopus 로고
    • R. Eickhoff, U. Rückert, Tolerance of radial-basis functions against stuck-at-faults, in: Proceedings of the International Conference on Artificial Neural Networks (ICANN), Warsaw, Poland, 11-15 September 2005, Lecture Notes in Computer Science, vol. 3697, Springer, Berlin, pp. 1003-1008.
  • 12
    • 0026899732 scopus 로고
    • A constructive method for multivariate function approximation by multilayer perceptrons
    • Geva S., and Sitte J. A constructive method for multivariate function approximation by multilayer perceptrons. IEEE Trans. Neural Networks 3 4 (1992) 621-624
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.4 , pp. 621-624
    • Geva, S.1    Sitte, J.2
  • 13
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi F., Jones M., and Poggio T. Regularization theory and neural networks architectures. Neural Comput. 7 2 (1995) 219-269
    • (1995) Neural Comput. , vol.7 , Issue.2 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 14
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • Girosi F., and Poggio T. Networks and the best approximation property. Biol. Cybern. 63 (1990) 169-176
    • (1990) Biol. Cybern. , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 15
    • 0028495186 scopus 로고
    • Switched-current memory circuits for high-precision applications
    • Guggenbuhl W., Di J., and Goette J. Switched-current memory circuits for high-precision applications. IEEE J. Solid-State Circuits 29 9 (1994) 1108-1116
    • (1994) IEEE J. Solid-State Circuits , vol.29 , Issue.9 , pp. 1108-1116
    • Guggenbuhl, W.1    Di, J.2    Goette, J.3
  • 17
    • 22944480530 scopus 로고    scopus 로고
    • The cocktail party problem
    • Haykin S., and Chen Z. The cocktail party problem. Neural Comput. 17 9 (2005) 1875-1902
    • (2005) Neural Comput. , vol.17 , Issue.9 , pp. 1875-1902
    • Haykin, S.1    Chen, Z.2
  • 18
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning rbf (ggap-rbf) neural network for function approximation
    • Huang G.-B., Saratchandran P., and Sundararajan N. A generalized growing and pruning rbf (ggap-rbf) neural network for function approximation. IEEE Trans. Neural Networks 16 1 (2005) 57-67
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 21
    • 84957692004 scopus 로고    scopus 로고
    • X. Parra, A. Català, Sensitive analysis of radial basis function networks for fault tolerance purposes, in: Fifth International Work-Conference on Artificial Neural Networks (IWANN), vol. 1, Alicante, Spain, 1999, pp. 566-572.
  • 22
    • 34548177435 scopus 로고    scopus 로고
    • X. Parra, A. Català, Learning fault tolerance in radial basis function networks, in: M. Verleysen (Ed.), Proceedings of the Ninth European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, April 2001, D-Side Publications, pp. 341-346.
  • 25
    • 0029269583 scopus 로고
    • Complete and partial fault tolerance of feedforward neural nets
    • Phatak D.S., and Koren I. Complete and partial fault tolerance of feedforward neural nets. IEEE Trans. Neural Networks 6 2 (1995) 446-456
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.2 , pp. 446-456
    • Phatak, D.S.1    Koren, I.2
  • 27
    • 34548155378 scopus 로고    scopus 로고
    • U. Rückert, H. Surmann, Tolerance of a binary associative memory towards stuck-at-faults, in: T. Kohonen (Ed.), Artificial Neural Networks, vol. 2, North-Holland, Amsterdam, 1991, pp. 1195-1198.
  • 29
    • 84940644968 scopus 로고    scopus 로고
    • C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379-423; 623-656.
  • 30
    • 15344344549 scopus 로고    scopus 로고
    • Encoding strategy for maximum noise tolerance bidirectional associative memory
    • Shen D., and Cruz Jr. J.B. Encoding strategy for maximum noise tolerance bidirectional associative memory. IEEE Trans. Neural Networks 16 2 (2005) 293-300
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.2 , pp. 293-300
    • Shen, D.1    Cruz Jr., J.B.2
  • 32
    • 0344404248 scopus 로고    scopus 로고
    • Local cluster neural net: analog VLSI design
    • Sitte J., Körner T., and Rückert U. Local cluster neural net: analog VLSI design. Neurocomputing 19 (1998) 185-197
    • (1998) Neurocomputing , vol.19 , pp. 185-197
    • Sitte, J.1    Körner, T.2    Rückert, U.3
  • 35
    • 18744369958 scopus 로고    scopus 로고
    • Investigating the fault tolerance of neural networks
    • Tchernev E.B., Mulvaney R.G., and Phatak D.S. Investigating the fault tolerance of neural networks. Neural Comput. 17 7 (2005) 1646-1664
    • (2005) Neural Comput. , vol.17 , Issue.7 , pp. 1646-1664
    • Tchernev, E.B.1    Mulvaney, R.G.2    Phatak, D.S.3
  • 36
    • 22944485021 scopus 로고    scopus 로고
    • Perfect fault tolerance of the n-k-n network
    • Tchernev E.B., Mulvaney R.G., and Phatak D.S. Perfect fault tolerance of the n-k-n network. Neural Comput. 17 9 (2005) 1911-1920
    • (2005) Neural Comput. , vol.17 , Issue.9 , pp. 1911-1920
    • Tchernev, E.B.1    Mulvaney, R.G.2    Phatak, D.S.3
  • 39
    • 0036721934 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Verikas A., and Bacauskiene M. Feature selection with neural networks. Pattern Recognition Lett. 23 11 (2002) 1323-1335
    • (2002) Pattern Recognition Lett. , vol.23 , Issue.11 , pp. 1323-1335
    • Verikas, A.1    Bacauskiene, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.