메뉴 건너뛰기




Volumn , Issue , 2010, Pages

A spectral anomaly detector in hyperspectral images based on a non-Gaussian mixture model

Author keywords

Anomaly detection; Bayesian approach; Hyperspectral imagery; Model selection; Non Gaussian mixture model

Indexed keywords

ANOMALY DETECTION; BAYESIAN APPROACHES; HYPERSPECTRAL IMAGERY; MODEL SELECTION; NON-GAUSSIAN MIXTURE MODEL;

EID: 78649299970     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WHISPERS.2010.5594901     Document Type: Conference Paper
Times cited : (3)

References (11)
  • 1
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • D. Manolakis, G. Shaw, "Detection algorithms for hyperspectral imaging applications", IEEE Signal Processing Magazine, pp. 29-43, 2002.
    • (2002) IEEE Signal Processing Magazine , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 3
    • 33845659662 scopus 로고    scopus 로고
    • Robust Bayesian Clustering
    • C. Archambeau, and M. Verleysen, "Robust Bayesian Clustering", Neural Networks, vol.20, pp. 129-138, 2007.
    • (2007) Neural Networks , vol.20 , pp. 129-138
    • Archambeau, C.1    Verleysen, M.2
  • 5
    • 0344872411 scopus 로고    scopus 로고
    • On convergence problems of the EM algorithm for finite Gaussian mixtures
    • C. Archambeau, J. A. Lee, and M. Verleysen, "On convergence problems of the EM algorithm for finite Gaussian mixtures", in Proc. ESANN '03, 2003, p. 99.
    • (2003) Proc. ESANN '03 , pp. 99
    • Archambeau, C.1    Lee, J.A.2    Verleysen, M.3
  • 6
    • 48149085386 scopus 로고    scopus 로고
    • Robust Image Segmentation with Mixtures of Student's t-Distributions
    • G. Sfikas, C. Nikou, and N. Galatsanos, "Robust Image Segmentation with Mixtures of Student's t-Distributions", in Proc. ICIP '07, 2007, vol. 1, p. I-273.
    • (2007) Proc. ICIP '07 , vol.1
    • Sfikas, G.1    Nikou, C.2    Galatsanos, N.3
  • 8
    • 77949790497 scopus 로고    scopus 로고
    • Anomaly detection in hyperspectral imagery: Comparison of methods using diurnal and seasonal data
    • P. C. Hytla, R. C. Hardie, M. T. Eismann, and J. Meola, "Anomaly detection in hyperspectral imagery: comparison of methods using diurnal and seasonal data", J. Appl. Remote Sens., vol. 3, 2009.
    • (2009) J. Appl. Remote Sens. , vol.3
    • Hytla, P.C.1    Hardie, R.C.2    Eismann, M.T.3    Meola, J.4
  • 9
    • 77955682014 scopus 로고    scopus 로고
    • A tutorial overview of anomaly detection in hyperspectral images
    • in press, June
    • S. Matteoli, M. Diani, and G. Corsini, "A tutorial overview of anomaly detection in hyperspectral images", IEEE Aerosp. Electron. Syst. Mag. Tutorials, vol.21, no.6, in press, June 2010.
    • (2010) IEEE Aerosp. Electron. Syst. Mag. Tutorials , vol.21 , Issue.6
    • Matteoli, S.1    Diani, M.2    Corsini, G.3
  • 10
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised Learning of Gaussian Mixtures Based on Variational Component Splitting
    • C. Constantinopoulos, and A. Likas; "Unsupervised Learning of Gaussian Mixtures Based on Variational Component Splitting", IEEE Trans. on Neural Networks, vol. 18, pp. 745-755, 2007.
    • (2007) IEEE Trans. on Neural Networks , vol.18 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.