-
1
-
-
26944440933
-
Controlled Microfluidic Interfaces
-
NATUAS, 0028-0836, 10.1038/nature04163
-
Atencia J. Beebe D.J. Controlled Microfluidic Interfaces. Nature (London) 2005, 437(7059):648-655. NATUAS, 0028-0836, 10.1038/nature04163.
-
(2005)
Nature (London)
, vol.437
, Issue.7059
, pp. 648-655
-
-
Atencia, J.1
Beebe, D.J.2
-
2
-
-
80355135288
-
-
2007, BioMEMS and Cellular Biology: Perspectives and Applications, J. Vis. Exp., (8), p. 300.
-
Folch A. 2007, BioMEMS and Cellular Biology: Perspectives and Applications, J. Vis. Exp., (8), p. 300.
-
-
-
Folch, A.1
-
3
-
-
37349027919
-
Biomolecular Gradients in Cell Culture Systems
-
LCAHAM, 1473-0197, 10.1039/b711887b
-
Keenan T.M. Folch A. Biomolecular Gradients in Cell Culture Systems. Lab Chip 2007, 8(1):34-57. LCAHAM, 1473-0197, 10.1039/b711887b.
-
(2007)
Lab Chip
, vol.8
, Issue.1
, pp. 34-57
-
-
Keenan, T.M.1
Folch, A.2
-
4
-
-
35948984518
-
Generation of Stable Complex Gradients Across Two-Dimensional Surfaces and Three-Dimensional Gels
-
LANGD5, 0743-7463, 10.1021/la7026835
-
Mosadegh B. Huang C. Park J.W. Shin H.S. Chung B.G. Hwang S.K. Lee K.H. Kim H.J. Brody J. Jeon N.L. Generation of Stable Complex Gradients Across Two-Dimensional Surfaces and Three-Dimensional Gels. Langmuir 2007, 23(22):10910-10912. LANGD5, 0743-7463, 10.1021/la7026835.
-
(2007)
Langmuir
, vol.23
, Issue.22
, pp. 10910-10912
-
-
Mosadegh, B.1
Huang, C.2
Park, J.W.3
Shin, H.S.4
Chung, B.G.5
Hwang, S.K.6
Lee, K.H.7
Kim, H.J.8
Brody, J.9
Jeon, N.L.10
-
5
-
-
50249188454
-
Microfluidics Meet Cell Biology: Bridging the Gap by Validation and Application of Microscale Techniques for Cell Biological Assays
-
BIOEEJ, 0265-9247, 10.1002/bies.20804
-
Paguirigan A.L. Beebe D.J. Microfluidics Meet Cell Biology: Bridging the Gap by Validation and Application of Microscale Techniques for Cell Biological Assays. BioEssays 2008, 30(9):811-821. BIOEEJ, 0265-9247, 10.1002/bies.20804.
-
(2008)
BioEssays
, vol.30
, Issue.9
, pp. 811-821
-
-
Paguirigan, A.L.1
Beebe, D.J.2
-
6
-
-
33747117373
-
The Origins and the Future of Microfluidics
-
NATUAS, 0028-0836, 10.1038/nature05058
-
Whitesides G.M. The Origins and the Future of Microfluidics. Nature (London) 2006, 442(7101):368-373. NATUAS, 0028-0836, 10.1038/nature05058.
-
(2006)
Nature (London)
, vol.442
, Issue.7101
, pp. 368-373
-
-
Whitesides, G.M.1
-
7
-
-
84890819190
-
At the Interface: Advanced Microfluidic Assays for Study of Cell Function
-
Vol. 1, Springer Publishing, New York
-
Kamotani Y. Huh D. Futai N. Takayama S. At the Interface: Advanced Microfluidic Assays for Study of Cell Function. BioMEMS and Biomedical Nanotechnology 2007, 55-78, Vol. 1, Springer Publishing, New York.
-
(2007)
BioMEMS and Biomedical Nanotechnology
, pp. 55-78
-
-
Kamotani, Y.1
Huh, D.2
Futai, N.3
Takayama, S.4
-
8
-
-
0033988843
-
Fabrication of Microfluidic Systems in Poly(dimethylsiloxane)
-
ELCTDN, 0173-0835, 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
-
McDonald J. Duffy D. Anderson J. Chiu D.T. Wu H. Schueller O. Whitesides G.M. Fabrication of Microfluidic Systems in Poly(dimethylsiloxane). Electrophoresis 2000, 21(1):27-40. ELCTDN, 0173-0835, 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C.
-
(2000)
Electrophoresis
, vol.21
, Issue.1
, pp. 27-40
-
-
McDonald, J.1
Duffy, D.2
Anderson, J.3
Chiu, D.T.4
Wu, H.5
Schueller, O.6
Whitesides, G.M.7
-
9
-
-
33751392855
-
Applications of Microfluidics in Chemical Biology
-
COCBF4, 1367-5931, 10.1016/j.cbpa.2006.10.016
-
Weibel D.B. Whitesides G.M. Applications of Microfluidics in Chemical Biology. Curr. Opin. Chem. Biol. 2006, 10(6):584-591. COCBF4, 1367-5931, 10.1016/j.cbpa.2006.10.016.
-
(2006)
Curr. Opin. Chem. Biol.
, vol.10
, Issue.6
, pp. 584-591
-
-
Weibel, D.B.1
Whitesides, G.M.2
-
10
-
-
42149168563
-
Generation of Concentration Gradient From a Wave-Like Pattern by High Frequency Vibration of Liquid-Liquid Interface
-
ZZZZZZ, 1387-2176, 10.1007/s10544-007-9140-9
-
Motoo K. Toda N. Arai F. Fukuda T. Sekiyama K. Nakajima M. Generation of Concentration Gradient From a Wave-Like Pattern by High Frequency Vibration of Liquid-Liquid Interface. Biomed. Microdevices 2008, 10(3):329-335. ZZZZZZ, 1387-2176, 10.1007/s10544-007-9140-9.
-
(2008)
Biomed. Microdevices
, vol.10
, Issue.3
, pp. 329-335
-
-
Motoo, K.1
Toda, N.2
Arai, F.3
Fukuda, T.4
Sekiyama, K.5
Nakajima, M.6
-
11
-
-
33645501932
-
Demonstration of a PDMS-Based Bio-Microactuator Using Cultured Cardiomyocytes to Drive Polymer Micropillars
-
LCAHAM, 1473-0197, 10.1039/b512099c
-
Tanaka Y. Morishima K. Shimizu T. Kikuchi A. Yamato M. Okano T. Kitamori T. Demonstration of a PDMS-Based Bio-Microactuator Using Cultured Cardiomyocytes to Drive Polymer Micropillars. Lab Chip 2006, 6(2):230-235. LCAHAM, 1473-0197, 10.1039/b512099c.
-
(2006)
Lab Chip
, vol.6
, Issue.2
, pp. 230-235
-
-
Tanaka, Y.1
Morishima, K.2
Shimizu, T.3
Kikuchi, A.4
Yamato, M.5
Okano, T.6
Kitamori, T.7
-
12
-
-
58149496106
-
Microfluidic Pool Structure for Cell Docking and Rapid Mixing
-
ACACAM, 0003-2670, 10.1016/j.aca.2008.11.061
-
Yang J. Yang J. Yin Z.Q. Svir I. Xu J. Luo H.Y. Wang M. Cao Y. Hu N. Liao Y.J. Zheng X.L. Microfluidic Pool Structure for Cell Docking and Rapid Mixing. Anal. Chim. Acta 2009, 634(1):61-67. ACACAM, 0003-2670, 10.1016/j.aca.2008.11.061.
-
(2009)
Anal. Chim. Acta
, vol.634
, Issue.1
, pp. 61-67
-
-
Yang, J.1
Yang, J.2
Yin, Z.Q.3
Svir, I.4
Xu, J.5
Luo, H.Y.6
Wang, M.7
Cao, Y.8
Hu, N.9
Liao, Y.J.10
Zheng, X.L.11
-
13
-
-
77956431639
-
Bacterial Chemotaxis in Linear and Nonlinear Steady Microfluidic Gradients
-
NALEFD, 1530-6984, 10.1021/nl101204e
-
Ahmed T. Shimizu T.S. Stocker R. Bacterial Chemotaxis in Linear and Nonlinear Steady Microfluidic Gradients. Nano Lett. 2010, 10(9):3379-3385. NALEFD, 1530-6984, 10.1021/nl101204e.
-
(2010)
Nano Lett.
, vol.10
, Issue.9
, pp. 3379-3385
-
-
Ahmed, T.1
Shimizu, T.S.2
Stocker, R.3
-
14
-
-
21644441288
-
Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat
-
SCIEAS, 0036-8075, 10.1126/science.1109173
-
Balagadde F.K. You L. Hansen C.L. Arnold F.H. Quake S.R. Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat. Science 2005, 309(5731):137-140. SCIEAS, 0036-8075, 10.1126/science.1109173.
-
(2005)
Science
, vol.309
, Issue.5731
, pp. 137-140
-
-
Balagadde, F.K.1
You, L.2
Hansen, C.L.3
Arnold, F.H.4
Quake, S.R.5
-
15
-
-
62749175785
-
Cell Migration Into Scaffolds Under Co-Culture Conditions in a Microfluidic Platform
-
LCAHAM, 1473-0197, 10.1039/b807585a
-
Chung S. Sudo R. Mack P.J. Wan C.R. Vickerman V. Kamm R.D. Cell Migration Into Scaffolds Under Co-Culture Conditions in a Microfluidic Platform. Lab Chip 2009, 9(2):269-275. LCAHAM, 1473-0197, 10.1039/b807585a.
-
(2009)
Lab Chip
, vol.9
, Issue.2
, pp. 269-275
-
-
Chung, S.1
Sudo, R.2
Mack, P.J.3
Wan, C.R.4
Vickerman, V.5
Kamm, R.D.6
-
17
-
-
0035866594
-
Generation of Gradients Having Complex Shapes Using Microfluidic Networks
-
ANCHAM, 0003-2700, 10.1021/ac001132d
-
Dertinger S. Chiu D.T. Jeon N.L. Whitesides G.M. Generation of Gradients Having Complex Shapes Using Microfluidic Networks. Anal. Chem. 2001, 73:1240-1246. ANCHAM, 0003-2700, 10.1021/ac001132d.
-
(2001)
Anal. Chem.
, vol.73
, pp. 1240-1246
-
-
Dertinger, S.1
Chiu, D.T.2
Jeon, N.L.3
Whitesides, G.M.4
-
18
-
-
0036022527
-
Neutrophil Chemotaxis in Linear and Complex Gradients of Interleukin-8 Formed in a Microfabricated Device
-
NABIF9, 1087-0156
-
Jeon N.L. Baskararn H. Dertinger S. Whitesides G.M. Water L.V. Toner M. Neutrophil Chemotaxis in Linear and Complex Gradients of Interleukin-8 Formed in a Microfabricated Device. Nat. Biotechnol. 2002, 20:826-830. NABIF9, 1087-0156.
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 826-830
-
-
Jeon, N.L.1
Baskararn, H.2
Dertinger, S.3
Whitesides, G.M.4
Water, L.V.5
Toner, M.6
-
19
-
-
12344282703
-
Differentiation-on-a-Chip: A Microfluidic Platform for Long-Term Cell Culture Studies
-
LCAHAM, 1473-0197, 10.1039/b405719h
-
Tourovskaia A. Figueroa-Masot X. Folch A. Differentiation-on-a-Chip: A Microfluidic Platform for Long-Term Cell Culture Studies. Lab Chip 2005, 5(1):14-19. LCAHAM, 1473-0197, 10.1039/b405719h.
-
(2005)
Lab Chip
, vol.5
, Issue.1
, pp. 14-19
-
-
Tourovskaia, A.1
Figueroa-Masot, X.2
Folch, A.3
-
20
-
-
33746593689
-
Migration of Tumor Cells in 3D Matrices is Governed by Matrix Stiffness Along With Cell-Matrix Adhesion and Proteolysis
-
PNASA6, 0027-8424, 10.1073/pnas.0604460103
-
Zaman M.H. Trapani L.M. Sieminski A.L. Mackellar D. Gong H. Kamm R.D. Wells A. Lauffenburger D.A. Matsudaira P. Migration of Tumor Cells in 3D Matrices is Governed by Matrix Stiffness Along With Cell-Matrix Adhesion and Proteolysis. Proc. Natl. Acad. Sci. U.S.A. 2006, 103(29):10889-10894. PNASA6, 0027-8424, 10.1073/pnas.0604460103.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, Issue.29
, pp. 10889-10894
-
-
Zaman, M.H.1
Trapani, L.M.2
Sieminski, A.L.3
Mackellar, D.4
Gong, H.5
Kamm, R.D.6
Wells, A.7
Lauffenburger, D.A.8
Matsudaira, P.9
-
21
-
-
0035135971
-
Surface-Directed Liquid Flow Inside Microchannels
-
SCIEAS, 0036-8075, 10.1126/science.291.5506.1023
-
Zhao B. Moore J.S. Beebe D.J. Surface-Directed Liquid Flow Inside Microchannels. Science 2001, 291(5506):1023-1026. SCIEAS, 0036-8075, 10.1126/science.291.5506.1023.
-
(2001)
Science
, vol.291
, Issue.5506
, pp. 1023-1026
-
-
Zhao, B.1
Moore, J.S.2
Beebe, D.J.3
-
22
-
-
60749107475
-
-
MESA 2008, IEEE/ASME International Conference
-
Haibo X. Yi Z. Xin F. Huayong Y. Hongyang D. Study on Characteristics of Interface Between Multiple Laminar Streams and Application for Secondary Etching Inside Microchannels, Mechtroinc and Embedded Systems and Applications 2008, 243-248. and MESA 2008, IEEE/ASME International Conference.
-
(2008)
Study on Characteristics of Interface Between Multiple Laminar Streams and Application for Secondary Etching Inside Microchannels, Mechtroinc and Embedded Systems and Applications
, pp. 243-248
-
-
Haibo, X.1
Yi, Z.2
Xin, F.3
Huayong, Y.4
Hongyang, D.5
-
23
-
-
2542447393
-
Interface Configuration of the Two Layered Laminar Flow in a Curved Microchannel
-
CMEJAJ, 0300-9467, 10.1016/j.cej.2003.10.018
-
Yamaguchi Y. Takagi F. Watari T. Yamashita K. Nakamura H. Shimizu H. Maeda H. Interface Configuration of the Two Layered Laminar Flow in a Curved Microchannel. Chem. Eng. J. 2004, 101:367-372. CMEJAJ, 0300-9467, 10.1016/j.cej.2003.10.018.
-
(2004)
Chem. Eng. J.
, vol.101
, pp. 367-372
-
-
Yamaguchi, Y.1
Takagi, F.2
Watari, T.3
Yamashita, K.4
Nakamura, H.5
Shimizu, H.6
Maeda, H.7
-
24
-
-
0034293766
-
Generation of Solution and Surface Gradients Using Microfluidic Systems
-
LANGD5, 0743-7463, 10.1021/la000600b
-
Jeon N.L. Dertinger S. Chiu D.T. Choi I.S. Stroock A.D. Whitesides G.M. Generation of Solution and Surface Gradients Using Microfluidic Systems. Langmuir 2000, 16:8311-8316. LANGD5, 0743-7463, 10.1021/la000600b.
-
(2000)
Langmuir
, vol.16
, pp. 8311-8316
-
-
Jeon, N.L.1
Dertinger, S.2
Chiu, D.T.3
Choi, I.S.4
Stroock, A.D.5
Whitesides, G.M.6
-
25
-
-
61849102835
-
Rapid Generation of Spatially and Temporally Controllable Long-Range Concentration Gradients in a Microfluidic Device
-
LCAHAM, 1473-0197, 10.1039/b815990d
-
Du Y. Shim J. Vidula M. Hancock M.J. Lo E. Chung B.G. Borenstein J.T. Khabiry M. Cropek D.M. Khademhosseini A. Rapid Generation of Spatially and Temporally Controllable Long-Range Concentration Gradients in a Microfluidic Device. Lab Chip 2009, 9(6):761-767. LCAHAM, 1473-0197, 10.1039/b815990d.
-
(2009)
Lab Chip
, vol.9
, Issue.6
, pp. 761-767
-
-
Du, Y.1
Shim, J.2
Vidula, M.3
Hancock, M.J.4
Lo, E.5
Chung, B.G.6
Borenstein, J.T.7
Khabiry, M.8
Cropek, D.M.9
Khademhosseini, A.10
-
26
-
-
0036407229
-
Physics and Applications of Microfluidics in Biology
-
ARBEF7, 1523-9829, 10.1146/annurev.bioeng.4.112601.125916
-
Beebe D.J. Mensing G.A. Walker G.M. Physics and Applications of Microfluidics in Biology. Annu. Rev. Biomed. Eng. 2002, 4:261-286. ARBEF7, 1523-9829, 10.1146/annurev.bioeng.4.112601.125916.
-
(2002)
Annu. Rev. Biomed. Eng.
, vol.4
, pp. 261-286
-
-
Beebe, D.J.1
Mensing, G.A.2
Walker, G.M.3
-
27
-
-
78649735781
-
Porous-Layer Model for Laminar Liquid Flow in Rough Microchannels
-
MNIAAR, 1613-4982, and pp.
-
Izquierdo S. Valdés J.R. Martínez M. Accolti M. Woudberg S. Asinari P. Miana M. Du Plessis J.P. Porous-Layer Model for Laminar Liquid Flow in Rough Microchannels. Microfluid. Nanofluid. 2010, 1-13. MNIAAR, 1613-4982.
-
(2010)
Microfluid. Nanofluid.
, pp. 1-13
-
-
Izquierdo, S.1
Valdés, J.R.2
Martínez, M.3
Accolti, M.4
Woudberg, S.5
Asinari, P.6
Miana, M.7
Du Plessis, J.P.8
-
28
-
-
22844436154
-
Microcontact Printing of Proteins
-
ADVMEW, 0935-9648, 10.1002/1521-4095(200007)12:14<1067::AID-ADMA1067>3.0.CO;2-M
-
Bernard A. Renault J.P. Michel B. Bosshard H.R. Delamarche E. Microcontact Printing of Proteins. Adv. Mater. 2000, 12(14):1067-1070. ADVMEW, 0935-9648, 10.1002/1521-4095(200007)12:14<1067::AID-ADMA1067>3.0.CO;2-M.
-
(2000)
Adv. Mater.
, vol.12
, Issue.14
, pp. 1067-1070
-
-
Bernard, A.1
Renault, J.P.2
Michel, B.3
Bosshard, H.R.4
Delamarche, E.5
-
29
-
-
0030948781
-
Patterned Delivery of Immunoglobulins to Surfaces Using Microfluidic Networks
-
SCIEAS, 0036-8075, 10.1126/science.276.5313.779
-
Delamarche E. Bernard A. Schmid H. Michel B. Biebuyck H. Patterned Delivery of Immunoglobulins to Surfaces Using Microfluidic Networks. Science 1997, 276(5313):779-781. SCIEAS, 0036-8075, 10.1126/science.276.5313.779.
-
(1997)
Science
, vol.276
, Issue.5313
, pp. 779-781
-
-
Delamarche, E.1
Bernard, A.2
Schmid, H.3
Michel, B.4
Biebuyck, H.5
-
30
-
-
33745486504
-
Measurement of Cell Migration in Response to an Evolving Radial Chemokine Gradient Triggered by a Microvalve
-
LCAHAM, 1473-0197, 10.1039/b515560f
-
Frevert C.W. Boggy G. Keenan T.M. Folch A. Measurement of Cell Migration in Response to an Evolving Radial Chemokine Gradient Triggered by a Microvalve. Lab Chip 2006, 6(7):849-856. LCAHAM, 1473-0197, 10.1039/b515560f.
-
(2006)
Lab Chip
, vol.6
, Issue.7
, pp. 849-856
-
-
Frevert, C.W.1
Boggy, G.2
Keenan, T.M.3
Folch, A.4
-
31
-
-
34548086739
-
Building up Longitudinal Concentration Gradients in Shallow Microchannels
-
LCAHAM, 1473-0197, 10.1039/b706340g
-
Goulpeau J. Lonetti B. Trouchet D. Ajdari A. Tabeling P. Building up Longitudinal Concentration Gradients in Shallow Microchannels. Lab Chip 2007, 7(9):1154-1161. LCAHAM, 1473-0197, 10.1039/b706340g.
-
(2007)
Lab Chip
, vol.7
, Issue.9
, pp. 1154-1161
-
-
Goulpeau, J.1
Lonetti, B.2
Trouchet, D.3
Ajdari, A.4
Tabeling, P.5
-
32
-
-
33646746703
-
Universal Microfluidic Gradient Generator
-
ANCHAM, 0003-2700, 10.1021/ac0518710
-
Irimia D. Geba D.A. Toner M. Universal Microfluidic Gradient Generator. Anal. Chem. 2006, 78(10):3472-3477. ANCHAM, 0003-2700, 10.1021/ac0518710.
-
(2006)
Anal. Chem.
, vol.78
, Issue.10
, pp. 3472-3477
-
-
Irimia, D.1
Geba, D.A.2
Toner, M.3
-
33
-
-
0033485870
-
Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor
-
ANCHAM, 0003-2700, 10.1021/ac990504j
-
Kamholz A.E. Weigl B.H. Finlayson B.A. Yager P. Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor. Anal. Chem. 1999, 71(23):5340-5347. ANCHAM, 0003-2700, 10.1021/ac990504j.
-
(1999)
Anal. Chem.
, vol.71
, Issue.23
, pp. 5340-5347
-
-
Kamholz, A.E.1
Weigl, B.H.2
Finlayson, B.A.3
Yager, P.4
-
34
-
-
77952892320
-
Controlled Microscale Diffusion Gradients in Quiescent Extracellular Fluid
-
ZZZZZZ, 1387-2176, 10.1007/s10544-010-9409-2
-
Tan D.C. Yung L.Y. Roy P. Controlled Microscale Diffusion Gradients in Quiescent Extracellular Fluid. Biomed. Microdevices 2010, 12(3):523-532. ZZZZZZ, 1387-2176, 10.1007/s10544-010-9409-2.
-
(2010)
Biomed. Microdevices
, vol.12
, Issue.3
, pp. 523-532
-
-
Tan, D.C.1
Yung, L.Y.2
Roy, P.3
-
35
-
-
33644659211
-
Characterization of a Membrane-Based Gradient Generator for Use in Cell-Signaling Studies
-
LCAHAM, 1473-0197, 10.1039/b514133h
-
Abhyankar V.V. Lokuta M.A. Huttenlocher A. Beebe D.J. Characterization of a Membrane-Based Gradient Generator for Use in Cell-Signaling Studies. Lab Chip 2006, 6(3):389-393. LCAHAM, 1473-0197, 10.1039/b514133h.
-
(2006)
Lab Chip
, vol.6
, Issue.3
, pp. 389-393
-
-
Abhyankar, V.V.1
Lokuta, M.A.2
Huttenlocher, A.3
Beebe, D.J.4
-
36
-
-
0242322752
-
Fabrication of Patterned Multicomponent Protein Gradients and Gradient Arrays Using Microfluidic Depletion
-
ANCHAM, 0003-2700, 10.1021/ac034634a
-
Fosser K. Nuzzo R. Fabrication of Patterned Multicomponent Protein Gradients and Gradient Arrays Using Microfluidic Depletion. Anal. Chem. 2003, 75:5775-5782. ANCHAM, 0003-2700, 10.1021/ac034634a.
-
(2003)
Anal. Chem.
, vol.75
, pp. 5775-5782
-
-
Fosser, K.1
Nuzzo, R.2
-
37
-
-
77954071829
-
High-Throughput Methods to Define Complex Stem Cell Niches
-
BTNQDO, 0736-6205, 10.2144/000113401
-
Kobel S. Lutolf M. High-Throughput Methods to Define Complex Stem Cell Niches. BioTechniques 2010, 48(4):ix-xxii. BTNQDO, 0736-6205, 10.2144/000113401.
-
(2010)
BioTechniques
, vol.48
, Issue.4
-
-
Kobel, S.1
Lutolf, M.2
-
38
-
-
77953110115
-
Guiding Neuron Development With Planar Surface Gradients of Substrate Cues Deposited Using Microfluidic Devices
-
LCAHAM, 1473-0197, 10.1039/c001552k
-
Millet L.J. Stewart M.E. Nuzzo R.G. Gillette M.U. Guiding Neuron Development With Planar Surface Gradients of Substrate Cues Deposited Using Microfluidic Devices. Lab Chip 2010, 10(12):1525-1535. LCAHAM, 1473-0197, 10.1039/c001552k.
-
(2010)
Lab Chip
, vol.10
, Issue.12
, pp. 1525-1535
-
-
Millet, L.J.1
Stewart, M.E.2
Nuzzo, R.G.3
Gillette, M.U.4
-
39
-
-
33645469924
-
Generation of Complex, Static Solution Gradients in Microfluidic Channels
-
JACSAT, 0002-7863, 10.1021/ja058530o
-
Wu H. Huang B. Zare R.N. Generation of Complex, Static Solution Gradients in Microfluidic Channels. J. Am. Chem. Soc. 2006, 128(13):4194-4195. JACSAT, 0002-7863, 10.1021/ja058530o.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, Issue.13
, pp. 4194-4195
-
-
Wu, H.1
Huang, B.2
Zare, R.N.3
-
40
-
-
34748891055
-
Generation of Linear and Non-Linear Concentration Gradients Along Microfluidic Channel by Microtunnel Controlled Stepwise Addition of Sample Solution
-
LCAHAM, 1473-0197, 10.1039/b705525k
-
Li C.W. Chen R. Yang M. Generation of Linear and Non-Linear Concentration Gradients Along Microfluidic Channel by Microtunnel Controlled Stepwise Addition of Sample Solution. Lab Chip 2007, 7(10):1371-1373. LCAHAM, 1473-0197, 10.1039/b705525k.
-
(2007)
Lab Chip
, vol.7
, Issue.10
, pp. 1371-1373
-
-
Li, C.W.1
Chen, R.2
Yang, M.3
-
41
-
-
33847394655
-
MAPK-Mediated Bimodal Gene Expression and Adaptive Gradient Sensing in Yeast
-
NATUAS, 0028-0836, 10.1038/nature05561
-
Paliwal S. Iglesias P.A. Campbell K. Hilioti Z. Groisman A. Levchenko A. MAPK-Mediated Bimodal Gene Expression and Adaptive Gradient Sensing in Yeast. Nature (London) 2007, 446(7131):46-51. NATUAS, 0028-0836, 10.1038/nature05561.
-
(2007)
Nature (London)
, vol.446
, Issue.7131
, pp. 46-51
-
-
Paliwal, S.1
Iglesias, P.A.2
Campbell, K.3
Hilioti, Z.4
Groisman, A.5
Levchenko, A.6
-
42
-
-
0035132216
-
Theoretical Analysis of Molecular Diffusion in Pressure-Driven Laminar Flow in Microfluidic Channels
-
BIOJAU, 0006-3495, 10.1016/S0006-3495(01)76003-1
-
Kamholz A.E. Yager P. Theoretical Analysis of Molecular Diffusion in Pressure-Driven Laminar Flow in Microfluidic Channels. Biophys. J. 2001, 80(1):155-160. BIOJAU, 0006-3495, 10.1016/S0006-3495(01)76003-1.
-
(2001)
Biophys. J.
, vol.80
, Issue.1
, pp. 155-160
-
-
Kamholz, A.E.1
Yager, P.2
-
43
-
-
77952891041
-
A Microfluidic Imaging Chamber for the Direct Observation of Chemotactic Transmigration
-
ZZZZZZ, 1387-2176, 10.1007/s10544-010-9411-8
-
Breckenridge M.T. Egelhoff T.T. Baskaran H. A Microfluidic Imaging Chamber for the Direct Observation of Chemotactic Transmigration. Biomed. Microdevices 2010, 12(3):543-553. ZZZZZZ, 1387-2176, 10.1007/s10544-010-9411-8.
-
(2010)
Biomed. Microdevices
, vol.12
, Issue.3
, pp. 543-553
-
-
Breckenridge, M.T.1
Egelhoff, T.T.2
Baskaran, H.3
-
44
-
-
20444410428
-
Electrokinetic Concentration Gradient Generation Using a Converging-Diverging Microchannel
-
ACACAM, 0003-2670, 10.1016/j.aca.2005.04.041
-
Lee J. Hu Y. Li D. Electrokinetic Concentration Gradient Generation Using a Converging-Diverging Microchannel. Anal. Chim. Acta 2005, 543(1-2):99-108. ACACAM, 0003-2670, 10.1016/j.aca.2005.04.041.
-
(2005)
Anal. Chim. Acta
, vol.543
, Issue.1-2
, pp. 99-108
-
-
Lee, J.1
Hu, Y.2
Li, D.3
-
45
-
-
76549134964
-
Microfluidic Tools for Cell Biological Research
-
ZZZZZZ, 1748-0132
-
Velve-Casquillas G. Berrea M.L. Piela M. Tran P.T. Microfluidic Tools for Cell Biological Research. Nanotoday 2010, 5(1):28-47. ZZZZZZ, 1748-0132.
-
(2010)
Nanotoday
, vol.5
, Issue.1
, pp. 28-47
-
-
Velve-Casquillas, G.1
Berrea, M.L.2
Piela, M.3
Tran, P.T.4
-
46
-
-
34548354876
-
Generation of Stable Concentration Gradients in 2D and 3D Environments Using a Microfluidic Ladder Chamber
-
ZZZZZZ, 1387-2176, 10.1007/s10544-007-9051-9
-
Saadi W. Rhee S.W. Lin F. Vahidi B. Chung B.G. Jeon N.L. Generation of Stable Concentration Gradients in 2D and 3D Environments Using a Microfluidic Ladder Chamber. Biomed. Microdevices 2007, 9(5):627-635. ZZZZZZ, 1387-2176, 10.1007/s10544-007-9051-9.
-
(2007)
Biomed. Microdevices
, vol.9
, Issue.5
, pp. 627-635
-
-
Saadi, W.1
Rhee, S.W.2
Lin, F.3
Vahidi, B.4
Chung, B.G.5
Jeon, N.L.6
-
47
-
-
0242321296
-
A Novel Optical Assay System for the Quantitative Measurement of Chemotaxis
-
JIMMBG, 0022-1759, 10.1016/j.jim.2003.07.008
-
Kanegasaki S. Nomura Y. Nitta N. Akiyama S. Tamatani T. Goshoh Y. Yoshida T. Sato T. Kikuchi Y. A Novel Optical Assay System for the Quantitative Measurement of Chemotaxis. J. Immunol. Methods 2003, 282(1-2):1-11. JIMMBG, 0022-1759, 10.1016/j.jim.2003.07.008.
-
(2003)
J. Immunol. Methods
, vol.282
, Issue.1-2
, pp. 1-11
-
-
Kanegasaki, S.1
Nomura, Y.2
Nitta, N.3
Akiyama, S.4
Tamatani, T.5
Goshoh, Y.6
Yoshida, T.7
Sato, T.8
Kikuchi, Y.9
-
48
-
-
3142694728
-
Generation of Dynamic Temporal and Spatial Concentration Gradients Using Microfluidic Devices
-
LCAHAM, 1473-0197, 10.1039/b313600k
-
Lin F. Generation of Dynamic Temporal and Spatial Concentration Gradients Using Microfluidic Devices. Lab on a Chip 2004, 4(3):164-167. LCAHAM, 1473-0197, 10.1039/b313600k.
-
(2004)
Lab on a Chip
, vol.4
, Issue.3
, pp. 164-167
-
-
Lin, F.1
-
49
-
-
75149116112
-
Generation of Oxygen Gradients With Arbitrary Shapes in a Microfluidic Device
-
LCAHAM, 1473-0197, 10.1039/b920401f
-
Adler M. Polinkovsky M. Gutierrez E. Groisman A. Generation of Oxygen Gradients With Arbitrary Shapes in a Microfluidic Device. Lab Chip 2010, 10(3):388-391. LCAHAM, 1473-0197, 10.1039/b920401f.
-
(2010)
Lab Chip
, vol.10
, Issue.3
, pp. 388-391
-
-
Adler, M.1
Polinkovsky, M.2
Gutierrez, E.3
Groisman, A.4
-
50
-
-
72849143548
-
Differentiation of Neural Progenitor Cells in a Microfluidic Chip-Generated Cytokine Gradient
-
ZZZZZZ, 1066-5099, 10.1002/stem.202
-
Park J.Y. Kim S.K. Woo D.H. Lee E.J. Kim J.H. Lee S.H. Differentiation of Neural Progenitor Cells in a Microfluidic Chip-Generated Cytokine Gradient. Stem Cells 2009, 27(11):2646-2654. ZZZZZZ, 1066-5099, 10.1002/stem.202.
-
(2009)
Stem Cells
, vol.27
, Issue.11
, pp. 2646-2654
-
-
Park, J.Y.1
Kim, S.K.2
Woo, D.H.3
Lee, E.J.4
Kim, J.H.5
Lee, S.H.6
-
51
-
-
0032304945
-
Growth of Electrodeposited Platinum Nanocrystals Studied by Atomic Force Microscopy
-
ASUSEE, 0169-4332, 10.1016/S0169-4332(98)00355-9
-
Lee I. Chan K. Phillips D.L. Growth of Electrodeposited Platinum Nanocrystals Studied by Atomic Force Microscopy. Appl. Surf. Sci. 1998, 136(4):321-330. ASUSEE, 0169-4332, 10.1016/S0169-4332(98)00355-9.
-
(1998)
Appl. Surf. Sci.
, vol.136
, Issue.4
, pp. 321-330
-
-
Lee, I.1
Chan, K.2
Phillips, D.L.3
-
52
-
-
2942739105
-
Microarrays of Vertically-Aligned Carbon Nanofiber Electrodes in an Open Fluidic Channel
-
JPCBFK, 1089-5647, 10.1021/jp037987m
-
McKnight T.E. Melechko A.V. Austin D.W. Sims T. Guillorn M.A. Simpson M.L. Microarrays of Vertically-Aligned Carbon Nanofiber Electrodes in an Open Fluidic Channel. J. Phys. Chem. B 2004, 108:7115-7125. JPCBFK, 1089-5647, 10.1021/jp037987m.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 7115-7125
-
-
McKnight, T.E.1
Melechko, A.V.2
Austin, D.W.3
Sims, T.4
Guillorn, M.A.5
Simpson, M.L.6
-
53
-
-
0036558162
-
Electrophoretic Injection Within Microdevices
-
ANCHAM, 0003-2700, 10.1021/ac0110045
-
Vazquez M. McKinley G. Mitnik L. Desmarais S. Matsudaira P. Ehrlich D. Electrophoretic Injection Within Microdevices. Anal. Chem. 2002, 74(9):1952-1961. ANCHAM, 0003-2700, 10.1021/ac0110045.
-
(2002)
Anal. Chem.
, vol.74
, Issue.9
, pp. 1952-1961
-
-
Vazquez, M.1
McKinley, G.2
Mitnik, L.3
Desmarais, S.4
Matsudaira, P.5
Ehrlich, D.6
-
54
-
-
0035388036
-
Shear-Induced Degradation of Linear Polyacrylamide Solutions During Pre-Electrophoretic Loading
-
ANCHAM, 0003-2700, 10.1021/ac001294+
-
Vazquez M. Schmalzing D. Matsudaira P. Ehrlich D. McKinley G. Shear-Induced Degradation of Linear Polyacrylamide Solutions During Pre-Electrophoretic Loading. Anal. Chem. 2001, 73(13):3035-3044. ANCHAM, 0003-2700, 10.1021/ac001294+.
-
(2001)
Anal. Chem.
, vol.73
, Issue.13
, pp. 3035-3044
-
-
Vazquez, M.1
Schmalzing, D.2
Matsudaira, P.3
Ehrlich, D.4
McKinley, G.5
-
55
-
-
0038587441
-
Generating Fixed Concentration Arrays in a Microfluidic Device
-
SABCEB, 0925-4005, 10.1016/S0925-4005(03)00129-1
-
Holden M.A. Kumar S. Castellana E.T. Beskok A. Cremer P.S. Generating Fixed Concentration Arrays in a Microfluidic Device. Sens. Actuators B 2003, 92:199-207. SABCEB, 0925-4005, 10.1016/S0925-4005(03)00129-1.
-
(2003)
Sens. Actuators B
, vol.92
, pp. 199-207
-
-
Holden, M.A.1
Kumar, S.2
Castellana, E.T.3
Beskok, A.4
Cremer, P.S.5
-
57
-
-
71749083160
-
Hydrophilic Biopolymer Grafted on Poly(dimethylsiloxane) Surface for Microchip Electrophoresis
-
ACACAM, 0003-2670, 10.1016/j.aca.2009.10.052
-
Feng J.J. Wang A.J. Fan J. Xu J.J. Chen H.Y. Hydrophilic Biopolymer Grafted on Poly(dimethylsiloxane) Surface for Microchip Electrophoresis. Anal. Chim. Acta 2010, 658(1):75-80. ACACAM, 0003-2670, 10.1016/j.aca.2009.10.052.
-
(2010)
Anal. Chim. Acta
, vol.658
, Issue.1
, pp. 75-80
-
-
Feng, J.J.1
Wang, A.J.2
Fan, J.3
Xu, J.J.4
Chen, H.Y.5
-
58
-
-
0036280669
-
Anisotropic Diffusion in Mitral Cell Dendrites Revealed by Fluorescence Correction Spectroscopy
-
BIOJAU, 0006-3495, 10.1016/S0006-3495(02)75187-4
-
Gennerich A. Schild D. Anisotropic Diffusion in Mitral Cell Dendrites Revealed by Fluorescence Correction Spectroscopy. Biophys. J. 2002, 83:510-522. BIOJAU, 0006-3495, 10.1016/S0006-3495(02)75187-4.
-
(2002)
Biophys. J.
, vol.83
, pp. 510-522
-
-
Gennerich, A.1
Schild, D.2
-
59
-
-
0031924935
-
Localized Delivery of Proteins in the Brain: Can Transport Be Customized?
-
PHREEB, 0724-8741, 10.1023/A:1011911912174
-
Haller M.F. Saltzman W.M. Localized Delivery of Proteins in the Brain: Can Transport Be Customized?. Pharm. Res. 1998, 15(3):377-385. PHREEB, 0724-8741, 10.1023/A:1011911912174.
-
(1998)
Pharm. Res.
, vol.15
, Issue.3
, pp. 377-385
-
-
Haller, M.F.1
Saltzman, W.M.2
-
61
-
-
0034228594
-
Structure Properties of Dextran. 2. Dilute Solution
-
MAMOBX, 0024-9297, 10.1021/ma000282n
-
Ioan C.E. Aberle T. Burchard W. Structure Properties of Dextran. 2. Dilute Solution. Macromolecules 2000, 33(15):5730-5739. MAMOBX, 0024-9297, 10.1021/ma000282n.
-
(2000)
Macromolecules
, vol.33
, Issue.15
, pp. 5730-5739
-
-
Ioan, C.E.1
Aberle, T.2
Burchard, W.3
-
62
-
-
0027957542
-
Antibody Diffusion in Human Cervical Mucus
-
BIOJAU, 0006-3495, 10.1016/S0006-3495(94)80802-1
-
Saltzman W.M. Radomsky M.L. Whaley K.J. Cone R.A. Antibody Diffusion in Human Cervical Mucus. Biophys. J. 1994, 66(2):508-515. BIOJAU, 0006-3495, 10.1016/S0006-3495(94)80802-1.
-
(1994)
Biophys. J.
, vol.66
, Issue.2
, pp. 508-515
-
-
Saltzman, W.M.1
Radomsky, M.L.2
Whaley, K.J.3
Cone, R.A.4
-
63
-
-
33144467371
-
Microfluidic Particle Sorter Employing Flow Splitting and Recombining
-
ANCHAM, 0003-2700, 10.1021/ac0520083
-
Yamada M. Seki M. Microfluidic Particle Sorter Employing Flow Splitting and Recombining. Anal. Chem. 2006, 78(4):1357-1362. ANCHAM, 0003-2700, 10.1021/ac0520083.
-
(2006)
Anal. Chem.
, vol.78
, Issue.4
, pp. 1357-1362
-
-
Yamada, M.1
Seki, M.2
-
64
-
-
67649305243
-
Selective and Tunable Gradient Device for Cell Culture and Chemotaxis Study
-
LCAHAM, 1473-0197, 10.1039/b901613a
-
Kim D. Lokuta M.A. Huttenlocher A. Beebe D.J. Selective and Tunable Gradient Device for Cell Culture and Chemotaxis Study. Lab Chip 2009, 9(12):1797-1800. LCAHAM, 1473-0197, 10.1039/b901613a.
-
(2009)
Lab Chip
, vol.9
, Issue.12
, pp. 1797-1800
-
-
Kim, D.1
Lokuta, M.A.2
Huttenlocher, A.3
Beebe, D.J.4
-
65
-
-
77955474884
-
Investigation of Bacterial Chemotaxis in Flow-Based Microfluidic Devices
-
NPARDW, 1750-2799, 10.1038/nprot.2010.18
-
Englert D.L. Manson M.D. Jayaraman A. Investigation of Bacterial Chemotaxis in Flow-Based Microfluidic Devices. Nat. Protoc. 2010, 5(5):864-872. NPARDW, 1750-2799, 10.1038/nprot.2010.18.
-
(2010)
Nat. Protoc.
, vol.5
, Issue.5
, pp. 864-872
-
-
Englert, D.L.1
Manson, M.D.2
Jayaraman, A.3
|