메뉴 건너뛰기




Volumn 80, Issue 3, 2010, Pages 464-476

A computational model for nitric oxide, nitrite and nitrate biotransport in the microcirculation: Effect of reduced nitric oxide consumption by red blood cells and blood velocity

Author keywords

Biotransport; Convection; Diffusion; Mathematical model; Microcirculation; Nitric oxide; Red blood cell

Indexed keywords

NITRATE; NITRIC OXIDE; NITRITE;

EID: 78249266312     PISSN: 00262862     EISSN: 10959319     Source Type: Journal    
DOI: 10.1016/j.mvr.2010.09.004     Document Type: Article
Times cited : (16)

References (74)
  • 1
    • 0000707453 scopus 로고
    • Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations
    • Arnold W.P., et al. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl Acad. Sci. USA 1977, 74:3203-3207.
    • (1977) Proc. Natl Acad. Sci. USA , vol.74 , pp. 3203-3207
    • Arnold, W.P.1
  • 2
    • 28244459618 scopus 로고    scopus 로고
    • Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation
    • Azarov I., et al. Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation. J. Biol. Chem. 2005, 280:39024-39032.
    • (2005) J. Biol. Chem. , vol.280 , pp. 39024-39032
    • Azarov, I.1
  • 3
    • 36248985678 scopus 로고    scopus 로고
    • 3 by the concerted nitrite reductase and anhydrase activity of hemoglobin
    • 3 by the concerted nitrite reductase and anhydrase activity of hemoglobin. Nat. Chem. Biol. 2007, 3:785-794.
    • (2007) Nat. Chem. Biol. , vol.3 , pp. 785-794
    • Basu, S.1
  • 4
    • 35349030248 scopus 로고    scopus 로고
    • Cerebral microvascular dilation during hypotension and decreased oxygen tension: a role for nNOS
    • Bauser-Heaton H.D., Bohlen H.G. Cerebral microvascular dilation during hypotension and decreased oxygen tension: a role for nNOS. Am. J. Physiol. Heart Circ. Physiol. 2007, 293:H2193-H2201.
    • (2007) Am. J. Physiol. Heart Circ. Physiol. , vol.293
    • Bauser-Heaton, H.D.1    Bohlen, H.G.2
  • 5
    • 0033529883 scopus 로고    scopus 로고
    • As human pial arteries (internal diameter 200-1000micron) get smaller, their wall thickness and capacity to develop tension relative to their diameter increase
    • Bevan J.A., et al. As human pial arteries (internal diameter 200-1000micron) get smaller, their wall thickness and capacity to develop tension relative to their diameter increase. Life Sci. 1999, 65:1153-1161.
    • (1999) Life Sci. , vol.65 , pp. 1153-1161
    • Bevan, J.A.1
  • 6
    • 70349616677 scopus 로고    scopus 로고
    • Transfer of nitric oxide by blood from upstream to downstream resistance vessels causes microvascular dilation
    • Bohlen H.G., et al. Transfer of nitric oxide by blood from upstream to downstream resistance vessels causes microvascular dilation. Am. J. Physiol. Heart Circ. Physiol. 2009, 297:H1337-H1346.
    • (2009) Am. J. Physiol. Heart Circ. Physiol. , vol.297
    • Bohlen, H.G.1
  • 7
    • 0030200913 scopus 로고    scopus 로고
    • Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli
    • Buerk D.G., et al. Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli. Microvasc. Res. 1996, 52:13-26.
    • (1996) Microvasc. Res. , vol.52 , pp. 13-26
    • Buerk, D.G.1
  • 8
    • 0032538124 scopus 로고    scopus 로고
    • Diffusion of nitric oxide and scavenging by blood in the vasculature
    • Butler A.R., et al. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim. Biophys. Acta 1998, 1425:168-176.
    • (1998) Biochim. Biophys. Acta , vol.1425 , pp. 168-176
    • Butler, A.R.1
  • 9
    • 0002732412 scopus 로고
    • The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes
    • Carlsen E., Comroe J.H. The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J. Gen. Physiol. 1958, 42:83-107.
    • (1958) J. Gen. Physiol. , vol.42 , pp. 83-107
    • Carlsen, E.1    Comroe, J.H.2
  • 10
    • 0016589435 scopus 로고
    • Conformation, co-operativity and ligand binding in human hemoglobin
    • Cassoly R., Gibson Q. Conformation, co-operativity and ligand binding in human hemoglobin. J. Mol. Biol. 1975, 91:301-313.
    • (1975) J. Mol. Biol. , vol.91 , pp. 301-313
    • Cassoly, R.1    Gibson, Q.2
  • 11
    • 33646348205 scopus 로고    scopus 로고
    • 2 transport
    • 2 transport. J. Appl. Physiol. 2006, 100:482-492.
    • (2006) J. Appl. Physiol. , vol.100 , pp. 482-492
    • Chen, X.1
  • 12
    • 34447498879 scopus 로고    scopus 로고
    • Vascular smooth muscle NO exposure from intraerythrocytic SNOHb: a mathematical model
    • Chen K., et al. Vascular smooth muscle NO exposure from intraerythrocytic SNOHb: a mathematical model. Antioxid. Redox Signal. 2007, 9:1097-1110.
    • (2007) Antioxid. Redox Signal. , vol.9 , pp. 1097-1110
    • Chen, K.1
  • 13
    • 33947394451 scopus 로고    scopus 로고
    • 2 transport in capillary-perfused tissue containing an arteriole and venule pair
    • 2 transport in capillary-perfused tissue containing an arteriole and venule pair. Ann. Biomed. Eng. 2007, 35:517-529.
    • (2007) Ann. Biomed. Eng. , vol.35 , pp. 517-529
    • Chen, X.1
  • 14
    • 37349007679 scopus 로고    scopus 로고
    • Nitric oxide from nitrite reduction by hemoglobin in the plasma and erythrocytes
    • Chen K., et al. Nitric oxide from nitrite reduction by hemoglobin in the plasma and erythrocytes. Nitric Oxide 2008, 18:47-60.
    • (2008) Nitric Oxide , vol.18 , pp. 47-60
    • Chen, K.1
  • 15
    • 42949114897 scopus 로고    scopus 로고
    • Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective
    • Chen K., et al. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid. Redox Signal. 2008, 10:1185-1198.
    • (2008) Antioxid. Redox Signal. , vol.10 , pp. 1185-1198
    • Chen, K.1
  • 16
    • 30444450893 scopus 로고    scopus 로고
    • Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation
    • Crawford J.H., et al. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 2006, 107:566-574.
    • (2006) Blood , vol.107 , pp. 566-574
    • Crawford, J.H.1
  • 17
    • 73449125764 scopus 로고    scopus 로고
    • Extracellular diffusion and permeability effects on NO-RBCs interactions using an experimental and theoretical model
    • Deonikar P., Kavdia M. Extracellular diffusion and permeability effects on NO-RBCs interactions using an experimental and theoretical model. Microvasc. Res. 2009, 79:47-55.
    • (2009) Microvasc. Res. , vol.79 , pp. 47-55
    • Deonikar, P.1    Kavdia, M.2
  • 18
    • 77249171159 scopus 로고    scopus 로고
    • An integrated computational and experimental model of nitric oxide-red blood cell interactions
    • Deonikar P., Kavdia M. An integrated computational and experimental model of nitric oxide-red blood cell interactions. Ann. Biomed. Eng. 2009, 38:357-370.
    • (2009) Ann. Biomed. Eng. , vol.38 , pp. 357-370
    • Deonikar, P.1    Kavdia, M.2
  • 19
    • 53549093261 scopus 로고    scopus 로고
    • Hypoxic vasodilation by red blood cells: evidence for an s-nitrosothiol-based signal
    • Diesen D.L., et al. Hypoxic vasodilation by red blood cells: evidence for an s-nitrosothiol-based signal. Circ. Res. 2008, 103:545-553.
    • (2008) Circ. Res. , vol.103 , pp. 545-553
    • Diesen, D.L.1
  • 20
    • 77954623512 scopus 로고    scopus 로고
    • Positive correlation between plasma nitrite and performance during high-intensive exercise but not oxidative stress in healthy men
    • Dreissigacker U., et al. Positive correlation between plasma nitrite and performance during high-intensive exercise but not oxidative stress in healthy men. Nitric Oxide 2010, 23:128-135.
    • (2010) Nitric Oxide , vol.23 , pp. 128-135
    • Dreissigacker, U.1
  • 21
    • 15844372775 scopus 로고    scopus 로고
    • Mechanism of NO-induced oxidation of myoglobin and hemoglobin
    • Eich R.F., et al. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 1996, 35:6976-6983.
    • (1996) Biochemistry , vol.35 , pp. 6976-6983
    • Eich, R.F.1
  • 22
    • 0037258591 scopus 로고    scopus 로고
    • Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model
    • El-Farra N.H., et al. Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model. Ann. Biomed. Eng. 2003, 31:294-309.
    • (2003) Ann. Biomed. Eng. , vol.31 , pp. 294-309
    • El-Farra, N.H.1
  • 23
    • 0023820512 scopus 로고
    • Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical
    • Ellsworth M.L., et al. Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc. Res. 1988, 35:341-362.
    • (1988) Microvasc. Res. , vol.35 , pp. 341-362
    • Ellsworth, M.L.1
  • 24
    • 0031029637 scopus 로고    scopus 로고
    • Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions
    • Fukumura D., et al. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. Am. J. Pathol. 1997, 150:713-725.
    • (1997) Am. J. Pathol. , vol.150 , pp. 713-725
    • Fukumura, D.1
  • 25
    • 0019195506 scopus 로고
    • The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine
    • Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288:373-376.
    • (1980) Nature , vol.288 , pp. 373-376
    • Furchgott, R.F.1    Zawadzki, J.V.2
  • 26
    • 33751198519 scopus 로고    scopus 로고
    • Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation
    • Gladwin M.T., et al. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am. J. Physiol. Heart Circ. Physiol. 2006, 291:H2026-H2035.
    • (2006) Am. J. Physiol. Heart Circ. Physiol. , vol.291
    • Gladwin, M.T.1
  • 27
    • 0031106311 scopus 로고    scopus 로고
    • Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles
    • Haas T.L., Duling B.R. Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles. Microvasc. Res. 1997, 53:113-120.
    • (1997) Microvasc. Res. , vol.53 , pp. 113-120
    • Haas, T.L.1    Duling, B.R.2
  • 28
    • 19744380168 scopus 로고    scopus 로고
    • Erythrocyte nitric oxide transport reduced by a submembrane cytoskeletal barrier
    • Han T.H., Liao J.C. Erythrocyte nitric oxide transport reduced by a submembrane cytoskeletal barrier. Biochim. Biophys. Acta 2005, 1723:135-142.
    • (2005) Biochim. Biophys. Acta , vol.1723 , pp. 135-142
    • Han, T.H.1    Liao, J.C.2
  • 29
    • 33846427759 scopus 로고    scopus 로고
    • Nitric oxide red blood cell membrane permeability at high and low oxygen tension
    • Huang K.T., et al. Nitric oxide red blood cell membrane permeability at high and low oxygen tension. Nitric Oxide 2007, 16:209-216.
    • (2007) Nitric Oxide , vol.16 , pp. 209-216
    • Huang, K.T.1
  • 30
    • 0023505509 scopus 로고
    • Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide
    • Ignarro L.J., et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl Acad. Sci. USA 1987, 84:9265-9269.
    • (1987) Proc. Natl Acad. Sci. USA , vol.84 , pp. 9265-9269
    • Ignarro, L.J.1
  • 31
    • 0027184205 scopus 로고
    • Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from l-arginine
    • Ignarro L.J., et al. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from l-arginine. Proc. Natl Acad. Sci. USA 1993, 90:8103-8107.
    • (1993) Proc. Natl Acad. Sci. USA , vol.90 , pp. 8103-8107
    • Ignarro, L.J.1
  • 32
    • 33749677309 scopus 로고    scopus 로고
    • Computation of plasma hemoglobin nitric oxide scavenging in hemolytic anemias
    • Jeffers A., et al. Computation of plasma hemoglobin nitric oxide scavenging in hemolytic anemias. Free Radic. Biol. Med. 2006, 41:1557-1565.
    • (2006) Free Radic. Biol. Med. , vol.41 , pp. 1557-1565
    • Jeffers, A.1
  • 33
    • 67649259156 scopus 로고    scopus 로고
    • The role of nitrite in nitric oxide homeostasis: a comparative perspective
    • Jensen F.B. The role of nitrite in nitric oxide homeostasis: a comparative perspective. Biochim. Biophys. Acta 2009, 1787:841-848.
    • (2009) Biochim. Biophys. Acta , vol.1787 , pp. 841-848
    • Jensen, F.B.1
  • 34
    • 0029875840 scopus 로고    scopus 로고
    • S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control
    • Jia L., et al. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996, 380:221-226.
    • (1996) Nature , vol.380 , pp. 221-226
    • Jia, L.1
  • 35
    • 0036677518 scopus 로고    scopus 로고
    • Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions
    • Joshi M.S., et al. Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions. Proc. Natl Acad. Sci. USA 2002, 99:10341-10346.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 10341-10346
    • Joshi, M.S.1
  • 36
    • 0033951994 scopus 로고    scopus 로고
    • Dynamic state of S-nitrosothiols in human plasma and whole blood
    • Jourd'heuil D., et al. Dynamic state of S-nitrosothiols in human plasma and whole blood. Free Radic. Biol. Med. 2000, 28:409-417.
    • (2000) Free Radic. Biol. Med. , vol.28 , pp. 409-417
    • Jourd'heuil, D.1
  • 37
    • 0029087961 scopus 로고
    • Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor
    • Kanai A.J., et al. Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ. Res. 1995, 77:284-293.
    • (1995) Circ. Res. , vol.77 , pp. 284-293
    • Kanai, A.J.1
  • 39
    • 3042569346 scopus 로고    scopus 로고
    • Contribution of nNOS- and eNOS-derived NO to microvascular smooth muscle NO exposure
    • Kavdia M., Popel A.S. Contribution of nNOS- and eNOS-derived NO to microvascular smooth muscle NO exposure. J. Appl. Physiol. 2004, 97:293-301.
    • (2004) J. Appl. Physiol. , vol.97 , pp. 293-301
    • Kavdia, M.1    Popel, A.S.2
  • 40
    • 33644865233 scopus 로고    scopus 로고
    • Venular endothelium-derived NO can affect paired arteriole: a computational model
    • Kavdia M., Popel A.S. Venular endothelium-derived NO can affect paired arteriole: a computational model. Am. J. Physiol. Heart Circ. Physiol. 2006, 290:H716-H723.
    • (2006) Am. J. Physiol. Heart Circ. Physiol. , vol.290
    • Kavdia, M.1    Popel, A.S.2
  • 41
    • 0036083503 scopus 로고    scopus 로고
    • Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitutes
    • Kavdia M., et al. Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitutes. Am. J. Physiol. Heart Circ. Physiol. 2002, 282:H2245-H2253.
    • (2002) Am. J. Physiol. Heart Circ. Physiol. , vol.282
    • Kavdia, M.1
  • 42
    • 0028858748 scopus 로고
    • Role of nitric oxide in the regulation of coronary vascular tone in hearts from hypertensive rats. Maintenance of nitric oxide-forming capacity and increased basal production of nitric oxide
    • Kelm M., et al. Role of nitric oxide in the regulation of coronary vascular tone in hearts from hypertensive rats. Maintenance of nitric oxide-forming capacity and increased basal production of nitric oxide. Hypertension 1995, 25:186-193.
    • (1995) Hypertension , vol.25 , pp. 186-193
    • Kelm, M.1
  • 43
    • 10744229717 scopus 로고    scopus 로고
    • Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals
    • Kleinbongard P., et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic. Biol. Med. 2003, 35:790-796.
    • (2003) Free Radic. Biol. Med. , vol.35 , pp. 790-796
    • Kleinbongard, P.1
  • 44
    • 0027992219 scopus 로고
    • Simulation of the diffusion and reaction of endogenously produced nitric oxide
    • Lancaster J.R. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl Acad. Sci. USA 1994, 91:8137-8141.
    • (1994) Proc. Natl Acad. Sci. USA , vol.91 , pp. 8137-8141
    • Lancaster, J.R.1
  • 45
    • 0028070186 scopus 로고
    • Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions
    • Lewis R.S., Deen W.M. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem. Res. Toxicol. 1994, 7:568-574.
    • (1994) Chem. Res. Toxicol. , vol.7 , pp. 568-574
    • Lewis, R.S.1    Deen, W.M.2
  • 46
    • 0033587678 scopus 로고    scopus 로고
    • Intravascular flow decreases erythrocyte consumption of nitric oxide
    • Liao J.C., et al. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl Acad. Sci. USA 1999, 96:8757-8761.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 8757-8761
    • Liao, J.C.1
  • 47
    • 0032563283 scopus 로고    scopus 로고
    • Diffusion-limited reaction of free nitric oxide with erythrocytes
    • Liu X., et al. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 1998, 273:18709-18713.
    • (1998) J. Biol. Chem. , vol.273 , pp. 18709-18713
    • Liu, X.1
  • 48
    • 0037135629 scopus 로고    scopus 로고
    • Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance
    • Liu X., et al. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J. Biol. Chem. 2002, 277:26194-26199.
    • (2002) J. Biol. Chem. , vol.277 , pp. 26194-26199
    • Liu, X.1
  • 49
    • 34247899197 scopus 로고    scopus 로고
    • Estimation of nitric oxide concentration in blood for different rates of generation. Evidence that intravascular nitric oxide levels are too low to exert physiological effects
    • Liu X., et al. Estimation of nitric oxide concentration in blood for different rates of generation. Evidence that intravascular nitric oxide levels are too low to exert physiological effects. J. Biol. Chem. 2007, 282:8831-8836.
    • (2007) J. Biol. Chem. , vol.282 , pp. 8831-8836
    • Liu, X.1
  • 50
    • 0027216735 scopus 로고
    • Direct electrochemical measurement of nitric oxide released from human platelets
    • Malinski T., et al. Direct electrochemical measurement of nitric oxide released from human platelets. Biochem. Biophys. Res. Commun. 1993, 194:960-965.
    • (1993) Biochem. Biophys. Res. Commun. , vol.194 , pp. 960-965
    • Malinski, T.1
  • 51
    • 0028787682 scopus 로고
    • Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide
    • Marks D.S., et al. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J. Clin. Invest. 1995, 96:2630-2638.
    • (1995) J. Clin. Invest. , vol.96 , pp. 2630-2638
    • Marks, D.S.1
  • 52
    • 0025883342 scopus 로고
    • Nitric oxide: physiology, pathophysiology, and pharmacology
    • Moncada S., et al. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43:109-142.
    • (1991) Pharmacol. Rev. , vol.43 , pp. 109-142
    • Moncada, S.1
  • 53
    • 0344443777 scopus 로고    scopus 로고
    • Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction
    • Nagababu E., et al. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J. Biol. Chem. 2003, 278:46349-46356.
    • (2003) J. Biol. Chem. , vol.278 , pp. 46349-46356
    • Nagababu, E.1
  • 54
    • 0023198721 scopus 로고
    • Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor
    • Palmer R.M., et al. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327:524-526.
    • (1987) Nature , vol.327 , pp. 524-526
    • Palmer, R.M.1
  • 55
    • 0024368187 scopus 로고
    • Theory of oxygen transport to tissue
    • Popel A.S. Theory of oxygen transport to tissue. Crit. Rev. Biomed. Eng. 1989, 17:257-321.
    • (1989) Crit. Rev. Biomed. Eng. , vol.17 , pp. 257-321
    • Popel, A.S.1
  • 56
    • 0026082745 scopus 로고
    • Modulation of platelet aggregation by an l-arginine-nitric oxide pathway
    • Radomski M.W., et al. Modulation of platelet aggregation by an l-arginine-nitric oxide pathway. Trends Pharmacol. Sci. 1991, 12:87-88.
    • (1991) Trends Pharmacol. Sci. , vol.12 , pp. 87-88
    • Radomski, M.W.1
  • 57
    • 0027166309 scopus 로고
    • Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide
    • Radomski M.W., et al. Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovasc. Res. 1993, 27:1380-1382.
    • (1993) Cardiovasc. Res. , vol.27 , pp. 1380-1382
    • Radomski, M.W.1
  • 58
    • 0035738371 scopus 로고    scopus 로고
    • A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall
    • Sharan M., Popel A.S. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 2001, 38:415-428.
    • (2001) Biorheology , vol.38 , pp. 415-428
    • Sharan, M.1    Popel, A.S.2
  • 59
    • 11244316895 scopus 로고    scopus 로고
    • Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin
    • Singel D.J., Stamler J.S. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu. Rev. Physiol. 2005, 67:99-145.
    • (2005) Annu. Rev. Physiol. , vol.67 , pp. 99-145
    • Singel, D.J.1    Stamler, J.S.2
  • 60
    • 0345700718 scopus 로고    scopus 로고
    • Advective transport of nitric oxide in a mathematical model of the afferent arteriole
    • Smith K.M., et al. Advective transport of nitric oxide in a mathematical model of the afferent arteriole. Am. J. Physiol. Ren. Physiol. 2003, 284:F1080-F1096.
    • (2003) Am. J. Physiol. Ren. Physiol. , vol.284
    • Smith, K.M.1
  • 61
    • 0030791742 scopus 로고    scopus 로고
    • Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient
    • Stamler J.S., et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 1997, 276:2034-2037.
    • (1997) Science , vol.276 , pp. 2034-2037
    • Stamler, J.S.1
  • 62
    • 15744405119 scopus 로고    scopus 로고
    • Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion
    • Tsai A.G., et al. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am. J. Physiol. Heart Circ. Physiol. 2005, 288:H1730-H1739.
    • (2005) Am. J. Physiol. Heart Circ. Physiol. , vol.288
    • Tsai, A.G.1
  • 63
    • 33751198276 scopus 로고    scopus 로고
    • Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers
    • Tsai A.G., et al. Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers. Blood 2006, 108:3603-3610.
    • (2006) Blood , vol.108 , pp. 3603-3610
    • Tsai, A.G.1
  • 64
    • 57149100756 scopus 로고    scopus 로고
    • Nitric oxide bioavailability in the microcirculation: insights from mathematical models
    • Tsoukias N.M. Nitric oxide bioavailability in the microcirculation: insights from mathematical models. Microcirculation 2008, 15:813-834.
    • (2008) Microcirculation , vol.15 , pp. 813-834
    • Tsoukias, N.M.1
  • 65
    • 0036080325 scopus 로고    scopus 로고
    • Erythrocyte consumption of nitric oxide in presence and absence of plasma-based hemoglobin
    • Tsoukias N.M., Popel A.S. Erythrocyte consumption of nitric oxide in presence and absence of plasma-based hemoglobin. Am. J. Physiol. Heart Circ. Physiol. 2002, 282:H2265-H2277.
    • (2002) Am. J. Physiol. Heart Circ. Physiol. , vol.282
    • Tsoukias, N.M.1    Popel, A.S.2
  • 66
    • 33750814148 scopus 로고    scopus 로고
    • Effective diffusion distance of nitric oxide in the microcirculation
    • Vaughn M.W., et al. Effective diffusion distance of nitric oxide in the microcirculation. Am. J. Physiol. 1998, 274:H1705-H1714.
    • (1998) Am. J. Physiol. , vol.274
    • Vaughn, M.W.1
  • 67
    • 0031859924 scopus 로고    scopus 로고
    • Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model
    • Vaughn M.W., et al. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am. J. Physiol. 1998, 274:H2163-H2176.
    • (1998) Am. J. Physiol. , vol.274
    • Vaughn, M.W.1
  • 68
    • 0034723187 scopus 로고    scopus 로고
    • Erythrocytes possess an intrinsic barrier to nitric oxide consumption
    • Vaughn M.W., et al. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J. Biol. Chem. 2000, 275:2342-2348.
    • (2000) J. Biol. Chem. , vol.275 , pp. 2342-2348
    • Vaughn, M.W.1
  • 69
    • 0035705694 scopus 로고    scopus 로고
    • Erythrocyte consumption of nitric oxide: competition experiment and model analysis
    • Vaughn M.W., et al. Erythrocyte consumption of nitric oxide: competition experiment and model analysis. Nitric Oxide 2001, 5:18-31.
    • (2001) Nitric Oxide , vol.5 , pp. 18-31
    • Vaughn, M.W.1
  • 70
    • 66149120945 scopus 로고    scopus 로고
    • Regulation of nitrite transport in red blood cells by hemoglobin oxygen fractional saturation
    • Vitturi D.A., et al. Regulation of nitrite transport in red blood cells by hemoglobin oxygen fractional saturation. Am. J. Physiol. Heart Circ. Physiol. 2009, 296:H1398-H1407.
    • (2009) Am. J. Physiol. Heart Circ. Physiol. , vol.296
    • Vitturi, D.A.1
  • 71
    • 31744439701 scopus 로고    scopus 로고
    • Quantifying the l-arginine paradox in vivo
    • Vukosavljevic N., et al. Quantifying the l-arginine paradox in vivo. Microvasc. Res. 2006, 71:48-54.
    • (2006) Microvasc. Res. , vol.71 , pp. 48-54
    • Vukosavljevic, N.1
  • 72
    • 0020457544 scopus 로고
    • Quantitative morphology of arterioles from the hamster cheek pouch related to mechanical analysis
    • Walmsley J.G., et al. Quantitative morphology of arterioles from the hamster cheek pouch related to mechanical analysis. Microvasc. Res. 1982, 24:249-271.
    • (1982) Microvasc. Res. , vol.24 , pp. 249-271
    • Walmsley, J.G.1
  • 73
    • 25444432236 scopus 로고    scopus 로고
    • Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production
    • Zani B.G., Bohlen H.G. Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am. J. Physiol. Heart Circ. Physiol. 2005, 289:H1381-H1390.
    • (2005) Am. J. Physiol. Heart Circ. Physiol. , vol.289
    • Zani, B.G.1    Bohlen, H.G.2
  • 74
    • 0028851010 scopus 로고
    • Nitric oxide changes in the rat brain after transient middle cerebral artery occlusion
    • Zhang Z.G., et al. Nitric oxide changes in the rat brain after transient middle cerebral artery occlusion. J. Neurol. Sci. 1995, 128:22-27.
    • (1995) J. Neurol. Sci. , vol.128 , pp. 22-27
    • Zhang, Z.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.