-
1
-
-
0035425503
-
Nitric oxide synthases: Structure, function and inhibition
-
Alderton WK, Cooper CE, and Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 357: 593-615, 2001.
-
(2001)
Biochem J
, vol.357
, pp. 593-615
-
-
Alderton, W.K.1
Cooper, C.E.2
Knowles, R.G.3
-
2
-
-
33749341862
-
How do red blood cells cause hypoxic vasodilation? The SNO-hemoglobin paradigm
-
Allen BW and Piantadosi CA. How do red blood cells cause hypoxic vasodilation? The SNO-hemoglobin paradigm. Am J Physiol Heart Circ Physiol 291: H1507-H1512, 2006.
-
(2006)
Am J Physiol Heart Circ Physiol
, vol.291
-
-
Allen, B.W.1
Piantadosi, C.A.2
-
3
-
-
33744832041
-
An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate
-
Angelo M, Singel DJ, and Stamler JS. An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc Natl Acad Sci U S A 103: 8366-8371, 2006.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 8366-8371
-
-
Angelo, M.1
Singel, D.J.2
Stamler, J.S.3
-
4
-
-
28244459618
-
Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation
-
Azarov I, Huang KT, Basu S, Gladwin MT, Hogg N, and Kim-Shapiro DB. Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation. J Biol Chem 280: 39024-39032, 2005.
-
(2005)
J Biol Chem
, vol.280
, pp. 39024-39032
-
-
Azarov, I.1
Huang, K.T.2
Basu, S.3
Gladwin, M.T.4
Hogg, N.5
Kim-Shapiro, D.B.6
-
5
-
-
0034813738
-
Can we model nitric oxide biotransporf? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities
-
Buerk DG. Can we model nitric oxide biotransporf? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Annu Rev Biomed Eng 3: 109-143, 2001.
-
(2001)
Annu Rev Biomed Eng
, vol.3
, pp. 109-143
-
-
Buerk, D.G.1
-
6
-
-
0032538124
-
Diffusion of nitric oxide and scavenging by blood in the vasculature
-
Butler AR, Megson IL, and Wright PG. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim Biophys Acta 1425: 168-176, 1998.
-
(1998)
Biochim Biophys Acta
, vol.1425
, pp. 168-176
-
-
Butler, A.R.1
Megson, I.L.2
Wright, P.G.3
-
7
-
-
33746313420
-
Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells
-
Chen K and Popel AS. Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radic Biol Med 41: 668-680, 2006.
-
(2006)
Free Radic Biol Med
, vol.41
, pp. 668-680
-
-
Chen, K.1
Popel, A.S.2
-
8
-
-
33847233296
-
Vascular and perivascular NO release and transport: Biochemical pathways of NOS1 and NOS3
-
Chen K and Popel AS. Vascular and perivascular NO release and transport: biochemical pathways of NOS1 and NOS3. Free Radic Biol Med 42: 811-822, 2007.
-
(2007)
Free Radic Biol Med
, vol.42
, pp. 811-822
-
-
Chen, K.1
Popel, A.S.2
-
9
-
-
0035033713
-
In vivo control of soluble guanylate cyclase activation by nitric oxide: A kinetic analysis
-
Condorelli P and George SC. In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis. Biophys J 80: 2110-2119, 2001.
-
(2001)
Biophys J
, vol.80
, pp. 2110-2119
-
-
Condorelli, P.1
George, S.C.2
-
10
-
-
0037258591
-
Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model
-
El-Farra NH, Christofides PD, and Liao JC. Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model. Ann Biomed Eng 31: 294-309, 2003.
-
(2003)
Ann Biomed Eng
, vol.31
, pp. 294-309
-
-
El-Farra, N.H.1
Christofides, P.D.2
Liao, J.C.3
-
11
-
-
33845327490
-
Nitric oxide regulation of mitochondrial oxygen consumption I: Cellular physiology
-
Giulivi C, Kato K, and Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumption I: cellular physiology. Am J Physiol Cell Physiol 291: C1225-C1231, 2006.
-
(2006)
Am J Physiol Cell Physiol
, vol.291
-
-
Giulivi, C.1
Kato, K.2
Cooper, C.E.3
-
12
-
-
18244387948
-
Hemoglobin as a nitrite reductase regulating red cell-dependent hypoxic vasodilation
-
Gladwin MT. Hemoglobin as a nitrite reductase regulating red cell-dependent hypoxic vasodilation. Am J Respir Cell Mol Biol 32: 363-366, 2005.
-
(2005)
Am J Respir Cell Mol Biol
, vol.32
, pp. 363-366
-
-
Gladwin, M.T.1
-
13
-
-
0038578668
-
Nitric oxide's reactions with hemoglobin: A view through the SNO-storm
-
Gladwin MT, Lancaster JR Jr, Freeman BA, and Schechter AN. Nitric oxide's reactions with hemoglobin: a view through the SNO-storm. Nat Med 9: 496-500, 2003.
-
(2003)
Nat Med
, vol.9
, pp. 496-500
-
-
Gladwin, M.T.1
Lancaster Jr, J.R.2
Freeman, B.A.3
Schechter, A.N.4
-
14
-
-
0037008720
-
2/NO-linked allosteric function
-
2/NO-linked allosteric function. J Biol Chem 277: 27818-27828, 2002.
-
(2002)
J Biol Chem
, vol.277
, pp. 27818-27828
-
-
Gladwin, M.T.1
Wang, X.2
Reiter, C.D.3
Yang, B.K.4
Vivas, E.X.5
Bonaventura, C.6
Schechter, A.N.7
-
15
-
-
20044392330
-
Nitric oxide, hemoglobin, and hypoxic vasodilation
-
Gow AJ. Nitric oxide, hemoglobin, and hypoxic vasodilation. Am J Respir Cell Mol Biol 32: 479-482, 2005.
-
(2005)
Am J Respir Cell Mol Biol
, vol.32
, pp. 479-482
-
-
Gow, A.J.1
-
16
-
-
33646435537
-
Estrogen modulates the mechanical homeostasis of mouse arterial vessels through nitric oxide
-
Guo X, Lu X, Ren H, Levin ER, and Kassab GS. Estrogen modulates the mechanical homeostasis of mouse arterial vessels through nitric oxide. Am J Physiol Heart Circ Physiol 290: H1788-H1797, 2006.
-
(2006)
Am J Physiol Heart Circ Physiol
, vol.290
-
-
Guo, X.1
Lu, X.2
Ren, H.3
Levin, E.R.4
Kassab, G.S.5
-
17
-
-
0031106311
-
Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles
-
Haas TL and Duling BR. Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles. Microvasc Res 53: 113-120, 1997.
-
(1997)
Microvasc Res
, vol.53
, pp. 113-120
-
-
Haas, T.L.1
Duling, B.R.2
-
18
-
-
0036081648
-
Neuronal NOS-dependent dilation to flow in coronary arteries of male eNOS-KO mice
-
Huang A, Sun D, Shesely EG, Levee EM, Koller A, and Kaley G. Neuronal NOS-dependent dilation to flow in coronary arteries of male eNOS-KO mice. Am J Physiol Heart Circ Physiol 282: H429-H436, 2002.
-
(2002)
Am J Physiol Heart Circ Physiol
, vol.282
-
-
Huang, A.1
Sun, D.2
Shesely, E.G.3
Levee, E.M.4
Koller, A.5
Kaley, G.6
-
19
-
-
18044378213
-
Analysis of nitric oxide donor effectiveness in resistance vessels
-
Hyduke DR and Liao JC. Analysis of nitric oxide donor effectiveness in resistance vessels. Am J Physiol Heart Circ Physiol 288: H2390-H2399, 2005.
-
(2005)
Am J Physiol Heart Circ Physiol
, vol.288
-
-
Hyduke, D.R.1
Liao, J.C.2
-
20
-
-
33845960772
-
Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking
-
Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, and Sessa WC. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc Natl Acad Sci USA 103: 19777-19782, 2006.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 19777-19782
-
-
Iwakiri, Y.1
Satoh, A.2
Chatterjee, S.3
Toomre, D.K.4
Chalouni, C.M.5
Fulton, D.6
Groszmann, R.J.7
Shah, V.H.8
Sessa, W.C.9
-
21
-
-
1842852208
-
Vasorelaxation by red blood cells and impairment in diabetes: Reduced nitric oxide and oxygen delivery by glycated hemoglobin
-
James PE, Lang D, Tufnell-Barret T, Milsom AB, and Frenneaux MP. Vasorelaxation by red blood cells and impairment in diabetes: reduced nitric oxide and oxygen delivery by glycated hemoglobin. Circ Res 94: 976-983, 2004.
-
(2004)
Circ Res
, vol.94
, pp. 976-983
-
-
James, P.E.1
Lang, D.2
Tufnell-Barret, T.3
Milsom, A.B.4
Frenneaux, M.P.5
-
22
-
-
26644467234
-
Hemoglobin mediated nitrite activation of soluble guanylyl cyclase
-
Jeffers A, Xu X, Huang KT, Cho M, Hogg N, Patel RP, and Kim-Shapiro DB. Hemoglobin mediated nitrite activation of soluble guanylyl cyclase. Comp Biochem Physiol A Mol Integr Physiol 142: 130-135, 2005.
-
(2005)
Comp Biochem Physiol A Mol Integr Physiol
, vol.142
, pp. 130-135
-
-
Jeffers, A.1
Xu, X.2
Huang, K.T.3
Cho, M.4
Hogg, N.5
Patel, R.P.6
Kim-Shapiro, D.B.7
-
23
-
-
0029875840
-
S- nitrosohaemoglobin: A dynamic activity of blood involved in vascular control
-
Jia L, Bonaventura C, Bonaventura J, and Stamler JS. S- nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380: 221-226, 1996.
-
(1996)
Nature
, vol.380
, pp. 221-226
-
-
Jia, L.1
Bonaventura, C.2
Bonaventura, J.3
Stamler, J.S.4
-
24
-
-
0037073486
-
Nonendothelial source of nitric oxide in arterioles but not in venules: Alternative source revealed in vivo by diaminofluorescein microfluorography
-
Kashiwagi S, Kajimura M, Yoshimura Y, and Suematsu M. Nonendothelial source of nitric oxide in arterioles but not in venules: alternative source revealed in vivo by diaminofluorescein microfluorography. Circ Res 91: e55-e64, 2002.
-
(2002)
Circ Res
, vol.91
-
-
Kashiwagi, S.1
Kajimura, M.2
Yoshimura, Y.3
Suematsu, M.4
-
25
-
-
33746853424
-
A computational model for free radicals transport in the microcirculation
-
Kavdia M. A computational model for free radicals transport in the microcirculation. Antioxid Redox Signal 8:1103-1111, 2006.
-
(2006)
Antioxid Redox Signal
, vol.8
, pp. 1103-1111
-
-
Kavdia, M.1
-
26
-
-
33644865233
-
Venular endothelium-derived NO can affect paired arteriole: A computational model
-
Kavdia M and Popel AS. Venular endothelium-derived NO can affect paired arteriole: a computational model. Am J Physiol Heart Circ Physiol 290: H716-H723, 2006.
-
(2006)
Am J Physiol Heart Circ Physiol
, vol.290
-
-
Kavdia, M.1
Popel, A.S.2
-
27
-
-
0038460795
-
Wall shear stress differentially affects NO level in arterioles for volume expanders and Hb-based OT carriers
-
Kavdia M and Popel AS. Wall shear stress differentially affects NO level in arterioles for volume expanders and Hb-based OT carriers. Microvasc Res 66: 49-58, 2003.
-
(2003)
Microvasc Res
, vol.66
, pp. 49-58
-
-
Kavdia, M.1
Popel, A.S.2
-
28
-
-
33645532445
-
Red blood cells express a functional endothelial nitric oxide synthase
-
Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, Kumara I, Gharini P, Kabanova S, Ozuyaman B, Schnurch HG, Godecke A, Weber AA, Robenek M, Robenek H, Bloch W, Rosen P, and Kelm M. Red blood cells express a functional endothelial nitric oxide synthase. Blood 107: 2943-2951, 2006.
-
(2006)
Blood
, vol.107
, pp. 2943-2951
-
-
Kleinbongard, P.1
Schulz, R.2
Rassaf, T.3
Lauer, T.4
Dejam, A.5
Jax, T.6
Kumara, I.7
Gharini, P.8
Kabanova, S.9
Ozuyaman, B.10
Schnurch, H.G.11
Godecke, A.12
Weber, A.A.13
Robenek, M.14
Robenek, H.15
Bloch, W.16
Rosen, P.17
Kelm, M.18
-
29
-
-
13444273181
-
Contribution of aldehyde dehydrogenase to mitochondrial bioactivation of nitroglycerin: Evidence for the activation of purified soluble guanylate cyclase through direct formation of nitric oxide
-
Kollau A, Hofer A, Russwurm M, Koesling D, Keung WM, Schmidt K, Brunner F, and Mayer B. Contribution of aldehyde dehydrogenase to mitochondrial bioactivation of nitroglycerin: evidence for the activation of purified soluble guanylate cyclase through direct formation of nitric oxide. Biochem J 385: 169-111, 2005.
-
(2005)
Biochem J
, vol.385
, pp. 169-111
-
-
Kollau, A.1
Hofer, A.2
Russwurm, M.3
Koesling, D.4
Keung, W.M.5
Schmidt, K.6
Brunner, F.7
Mayer, B.8
-
30
-
-
31544458671
-
Mitochondrial NO and reactive nitrogen species production: Does mtNOS exist?
-
Lacza Z, Pankotai E, Csordas A, Gero D, Kiss L, Horvath EM, Kollai M, Busija DW, and Szabo C. Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14: 162-168, 2006.
-
(2006)
Nitric Oxide
, vol.14
, pp. 162-168
-
-
Lacza, Z.1
Pankotai, E.2
Csordas, A.3
Gero, D.4
Kiss, L.5
Horvath, E.M.6
Kollai, M.7
Busija, D.W.8
Szabo, C.9
-
31
-
-
0027992219
-
Simulation of the diffusion and reaction of endogenously produced nitric oxide
-
Lancaster JR Jr. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci U S A 91: 8137-8141, 1994.
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, pp. 8137-8141
-
-
Lancaster Jr., J.R.1
-
32
-
-
0019955258
-
Hematocrit determination in small bore tubes by differential spectrophotometry
-
Lipowsky HH, Usami S, Chien S, and Pittman RN. Hematocrit determination in small bore tubes by differential spectrophotometry. Microvasc Res 24: 42-55, 1982.
-
(1982)
Microvasc Res
, vol.24
, pp. 42-55
-
-
Lipowsky, H.H.1
Usami, S.2
Chien, S.3
Pittman, R.N.4
-
35
-
-
0037902488
-
-
Rassaf T, Bryan NS, Maloney RE, Specian V, Kelm M, Kalyanaraman B, Rodriguez J, and Feelisch M. NO adducts in mammalian red blood cells: too much or too little? Nat Med 9: 481-482; author reply 482-483, 2003.
-
Rassaf T, Bryan NS, Maloney RE, Specian V, Kelm M, Kalyanaraman B, Rodriguez J, and Feelisch M. NO adducts in mammalian red blood cells: too much or too little? Nat Med 9: 481-482; author reply 482-483, 2003.
-
-
-
-
37
-
-
22844437450
-
Detection of human red blood cell-bound nitric oxide
-
Rogers SC, Khalatbari A, Gapper PW, Frenneaux MP, and James PE. Detection of human red blood cell-bound nitric oxide. J Biol Chem 280: 26720-26728, 2005.
-
(2005)
J Biol Chem
, vol.280
, pp. 26720-26728
-
-
Rogers, S.C.1
Khalatbari, A.2
Gapper, P.W.3
Frenneaux, M.P.4
James, P.E.5
-
38
-
-
33747063012
-
Nitric oxide activation of guanylyl cyclase in cells revisited
-
Roy B and Garthwaite J. Nitric oxide activation of guanylyl cyclase in cells revisited. Proc Natl Acad Sci U S A 103: 12185-12190, 2006.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 12185-12190
-
-
Roy, B.1
Garthwaite, J.2
-
39
-
-
0035738371
-
A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall
-
Sharan M and Popel AS. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38: 415-428, 2001.
-
(2001)
Biorheology
, vol.38
, pp. 415-428
-
-
Sharan, M.1
Popel, A.S.2
-
40
-
-
11244316895
-
Chemical physiology of blood flow regulation by red blood cells: The role of nitric oxide and S-nitrosohemoglobin
-
Singel DJ and Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Anna Rev Physiol 67: 99-145, 2005.
-
(2005)
Anna Rev Physiol
, vol.67
, pp. 99-145
-
-
Singel, D.J.1
Stamler, J.S.2
-
41
-
-
20344384288
-
Oxygen regulation of tumor perfusion by S-nitrosohemoglobin reveals a pressor activity of nitric oxide
-
Sonveaux P, Kaz AM, Snyder SA, Richardson RA, Cardenas-Navia LI, Braun RD, Pawloski JR, Tozer GM, Bonaventura J, McMahon TJ, Stamler JS, and Dewhirst MW. Oxygen regulation of tumor perfusion by S-nitrosohemoglobin reveals a pressor activity of nitric oxide. Circ Res 96: 1119-1126, 2005.
-
(2005)
Circ Res
, vol.96
, pp. 1119-1126
-
-
Sonveaux, P.1
Kaz, A.M.2
Snyder, S.A.3
Richardson, R.A.4
Cardenas-Navia, L.I.5
Braun, R.D.6
Pawloski, J.R.7
Tozer, G.M.8
Bonaventura, J.9
McMahon, T.J.10
Stamler, J.S.11
Dewhirst, M.W.12
-
42
-
-
5844284193
-
Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide
-
Stone JR and Marletta MA. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 35: 1093-1099, 1996.
-
(1996)
Biochemistry
, vol.35
, pp. 1093-1099
-
-
Stone, J.R.1
Marletta, M.A.2
-
43
-
-
0042262423
-
Mechanistic probing of gaseous signal transduction in microcirculation
-
Suematsu M, Suganuma K, and Kashiwagi S. Mechanistic probing of gaseous signal transduction in microcirculation. Antioxid Redox Signal 5: 485-492, 2003.
-
(2003)
Antioxid Redox Signal
, vol.5
, pp. 485-492
-
-
Suematsu, M.1
Suganuma, K.2
Kashiwagi, S.3
-
44
-
-
0035800889
-
Methods of detection of vascular reactive species: Nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite
-
Tarpey MM and Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89: 224-236, 2001.
-
(2001)
Circ Res
, vol.89
, pp. 224-236
-
-
Tarpey, M.M.1
Fridovich, I.2
-
46
-
-
15744405119
-
Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion
-
Tsai AG, Acero C, Nance PR, Cabrales P, Frangos JA, Buerk DG, and Intaglietta M. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 288: H1730-H1739, 2005.
-
(2005)
Am J Physiol Heart Circ Physiol
, vol.288
-
-
Tsai, A.G.1
Acero, C.2
Nance, P.R.3
Cabrales, P.4
Frangos, J.A.5
Buerk, D.G.6
Intaglietta, M.7
-
47
-
-
33751198276
-
Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers
-
Tsai AG, Cabrales P, Manjula BN, Acharya SS, Winslow RM, and Intaglietta M. Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers. Blood 108: 3603-3610, 2006.
-
(2006)
Blood
, vol.108
, pp. 3603-3610
-
-
Tsai, A.G.1
Cabrales, P.2
Manjula, B.N.3
Acharya, S.S.4
Winslow, R.M.5
Intaglietta, M.6
-
48
-
-
0036080325
-
Erythrocyte consumption of nitric oxide in presence and absence of plasma-based hemoglobin
-
Tsoukias NM and Popel AS. Erythrocyte consumption of nitric oxide in presence and absence of plasma-based hemoglobin. Am J Physiol Heart Circ Physiol 282: H2265-H2277, 2002.
-
(2002)
Am J Physiol Heart Circ Physiol
, vol.282
-
-
Tsoukias, N.M.1
Popel, A.S.2
-
49
-
-
0035705694
-
Erythrocyte consumption of nitric oxide: Competition experiment and model analysis
-
Vaughn MW, Huang KT, Kuo L, and Liao JC. Erythrocyte consumption of nitric oxide: competition experiment and model analysis. Nitric Oxide 5: 18-31, 2001.
-
(2001)
Nitric Oxide
, vol.5
, pp. 18-31
-
-
Vaughn, M.W.1
Huang, K.T.2
Kuo, L.3
Liao, J.C.4
-
50
-
-
0031859924
-
Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model
-
Vaughn MW, Kuo L, and Liao JC. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am J Physiol 274: H2163-H2176, 1998.
-
(1998)
Am J Physiol
, vol.274
-
-
Vaughn, M.W.1
Kuo, L.2
Liao, J.C.3
-
51
-
-
31744439701
-
Quantifying the L-arginine paradox in vivo
-
Vukosavljevic N, Jaron D, Barbee KA, and Buerk DG. Quantifying the L-arginine paradox in vivo. Microvasc Res 71: 48-54, 2006.
-
(2006)
Microvasc Res
, vol.71
, pp. 48-54
-
-
Vukosavljevic, N.1
Jaron, D.2
Barbee, K.A.3
Buerk, D.G.4
-
52
-
-
0032848295
-
Biochemical characterization of S-nitrosohemoglobin: Mechanisms underlying synthesis, no release, and biological activity
-
Wolzt M, MacAllister RJ, Davis D, Feelisch M, Moncada S, Vallance P, and Hobbs AJ. Biochemical characterization of S-nitrosohemoglobin: mechanisms underlying synthesis, no release, and biological activity. J Biol Chem 274: 28983-28990, 1999.
-
(1999)
J Biol Chem
, vol.274
, pp. 28983-28990
-
-
Wolzt, M.1
MacAllister, R.J.2
Davis, D.3
Feelisch, M.4
Moncada, S.5
Vallance, P.6
Hobbs, A.J.7
-
53
-
-
25444432236
-
Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production
-
Zani BG and Bohlen HG. Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am J Physiol Heart Circ Physiol 289: H1381-H1390, 2005.
-
(2005)
Am J Physiol Heart Circ Physiol
, vol.289
-
-
Zani, B.G.1
Bohlen, H.G.2
|