메뉴 건너뛰기




Volumn 9, Issue 3, 2009, Pages 1068-1089

Hybrid fuzzy set-based polynomial neural networks and their development with the aid of genetic optimization and information granulation

Author keywords

Fuzzy set based polynomial neural networks (FSPNN); Fuzzy set based polynomial neuron (FSPN); Genetic algorithms (GAs); Group method of data handling (GMDH); Hybrid fuzzy set based polynomial neural networks (HFSPNN); Information granulation (IG); Multi layer perceptron; Polynomial neural networks (PNN); Polynomial neuron (PN)

Indexed keywords

FUZZY SET-BASED POLYNOMIAL NEURAL NETWORKS (FSPNN); FUZZY SET-BASED POLYNOMIAL NEURON (FSPN); GROUP METHOD OF DATA HANDLING (GMDH); HYBRID FUZZY SET-BASED POLYNOMIAL NEURAL NETWORKS (HFSPNN); INFORMATION GRANULATION (IG); MULTI-LAYER PERCEPTRON; POLYNOMIAL NEURAL NETWORKS (PNN); POLYNOMIAL NEURON (PN);

EID: 67349127659     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2009.02.007     Document Type: Article
Times cited : (36)

References (46)
  • 1
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • Cherkassky V., Gehring D., and Mulier F. Comparison of adaptive methods for function estimation from samples. IEEE Trans. Neural Networks 7 (1996) 969-984
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2    Mulier, F.3
  • 2
    • 0030215076 scopus 로고    scopus 로고
    • Fuzzy function approximation with ellipsoidal rules
    • pp. 542ÿ560
    • Dickerson J.A., and Kosko B. Fuzzy function approximation with ellipsoidal rules. IEEE Trans. Syst. Man Cybern. B 26 (1996) pp. 542ÿ560
    • (1996) IEEE Trans. Syst. Man Cybern. B , vol.26
    • Dickerson, J.A.1    Kosko, B.2
  • 3
    • 0029370886 scopus 로고
    • Neural networks and abductive networks for chemical sensor signals: a case comparison
    • Sommer V., Tobias P., Kohl D., Sundgren H., and Lundstrom L. Neural networks and abductive networks for chemical sensor signals: a case comparison. Sens. Actuators B 28 (1995) 217-222
    • (1995) Sens. Actuators B , vol.28 , pp. 217-222
    • Sommer, V.1    Tobias, P.2    Kohl, D.3    Sundgren, H.4    Lundstrom, L.5
  • 4
    • 0030105463 scopus 로고    scopus 로고
    • A polynomial network modeling approach to a class of large-scale hydraulic systems
    • Kleinsteuber S., and Sepehri N. A polynomial network modeling approach to a class of large-scale hydraulic systems. Comput. Electr. Eng. 22 (1996) 151-168
    • (1996) Comput. Electr. Eng. , vol.22 , pp. 151-168
    • Kleinsteuber, S.1    Sepehri, N.2
  • 5
    • 0346781553 scopus 로고    scopus 로고
    • Ten years of genetic fuzzy systems: current framework and new trends
    • Cordon O., et al. Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141 1 (2004) 5-31
    • (2004) Fuzzy Sets Syst. , vol.141 , Issue.1 , pp. 5-31
    • Cordon, O.1
  • 6
    • 0742320761 scopus 로고    scopus 로고
    • Self-organizing polynomial neural networks based on PNs or FPNs: analysis and design
    • Oh S.-K., and Pedrycz W. Self-organizing polynomial neural networks based on PNs or FPNs: analysis and design. Fuzzy Sets Syst. 142 2 (2004)
    • (2004) Fuzzy Sets Syst. , vol.142 , Issue.2
    • Oh, S.-K.1    Pedrycz, W.2
  • 8
    • 0008089137 scopus 로고
    • Are genetic algorithms function optimizers?
    • R. Manner, B. Manderick Eds, North-Holland, Amsterdam
    • K.A. De Jong, Are genetic algorithms function optimizers?, in: R. Manner, B. Manderick (Eds.), Parallel Problem Solving From Nature 2, North-Holland, Amsterdam, 1992.
    • (1992) Parallel Problem Solving From Nature , vol.2
    • De Jong, K.A.1
  • 9
    • 27744519316 scopus 로고    scopus 로고
    • Fuzzy polynomial neuron-based self-organizing neural networks
    • Oh S.-K., and Pedrycz W. Fuzzy polynomial neuron-based self-organizing neural networks. Int. J. Gen. Syst. 32 May (3) (2003) 237-250
    • (2003) Int. J. Gen. Syst. , vol.32 , Issue.May 3 , pp. 237-250
    • Oh, S.-K.1    Pedrycz, W.2
  • 10
    • 9344244023 scopus 로고    scopus 로고
    • Self-organizing neural networks with fuzzy polynomial neurons
    • Oh S.-K., Pedrycz W., and Ahn T.-C. Self-organizing neural networks with fuzzy polynomial neurons. Appl. Soft Comput. 2 August (1F) (2002) 1-10
    • (2002) Appl. Soft Comput. , vol.2 , Issue.August 1F , pp. 1-10
    • Oh, S.-K.1    Pedrycz, W.2    Ahn, T.-C.3
  • 11
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational system
    • Pedrycz W. An identification algorithm in fuzzy relational system. Fuzzy Sets Syst. 13 (1984) 153-167
    • (1984) Fuzzy Sets Syst. , vol.13 , pp. 153-167
    • Pedrycz, W.1
  • 12
    • 0034300570 scopus 로고    scopus 로고
    • Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems
    • Oh S.-K., and Pedrycz W. Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems. Fuzzy Sets Syst. 115 2 (2000) 205-230
    • (2000) Fuzzy Sets Syst. , vol.115 , Issue.2 , pp. 205-230
    • Oh, S.-K.1    Pedrycz, W.2
  • 14
    • 0002907696 scopus 로고
    • The evaluation of fuzzy models derived from experimental data
    • Tong R.M. The evaluation of fuzzy models derived from experimental data. Fuzzy Sets Syst. 13 (1980) 1-12
    • (1980) Fuzzy Sets Syst. , vol.13 , pp. 1-12
    • Tong, R.M.1
  • 16
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • Sugeno M., and Yasukawa T. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1 1 (1993) 7-31
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 17
    • 0023209327 scopus 로고
    • Fuzzy model identification self-learning for dynamic system
    • Xu C.W., and Zailu Y. Fuzzy model identification self-learning for dynamic system. IEEE Trans. Syst. Man Cybern. SMC-17 4 (1987) 683-689
    • (1987) IEEE Trans. Syst. Man Cybern. , vol.SMC-17 , Issue.4 , pp. 683-689
    • Xu, C.W.1    Zailu, Y.2
  • 18
    • 0000636549 scopus 로고    scopus 로고
    • A clustering algorithm for fuzzy model identification
    • Chen J.Q., Xi Y.G., and Zhang Z.J. A clustering algorithm for fuzzy model identification. Fuzzy Sets Syst. 98 (1998) 319-329
    • (1998) Fuzzy Sets Syst. , vol.98 , pp. 319-329
    • Chen, J.Q.1    Xi, Y.G.2    Zhang, Z.J.3
  • 19
    • 0000212165 scopus 로고    scopus 로고
    • About the use of fuzzy clustering techniques for fuzzy model identification
    • Gomez-Skarmeta A.F., Delgado M., and Vila M.A. About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets Syst. 106 (1999) 179-188
    • (1999) Fuzzy Sets Syst. , vol.106 , pp. 179-188
    • Gomez-Skarmeta, A.F.1    Delgado, M.2    Vila, M.A.3
  • 20
    • 0031208215 scopus 로고    scopus 로고
    • A new approach to fuzzy modeling
    • Kim E.-T., et al. A new approach to fuzzy modeling. IEEE Trans. Fuzzy Syst. 5 3 (1997) 328-337
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.3 , pp. 328-337
    • Kim, E.-T.1
  • 21
    • 0032164985 scopus 로고    scopus 로고
    • A simple identified Sugeno-type fuzzy model via double clustering
    • Kim E.-T., et al. A simple identified Sugeno-type fuzzy model via double clustering. Inform. Sci. 110 (1998) 25-39
    • (1998) Inform. Sci. , vol.110 , pp. 25-39
    • Kim, E.-T.1
  • 22
    • 0001034441 scopus 로고    scopus 로고
    • A new artificial neural networks based fuzzy inference system with moving consequents in if-then rules and selected applications
    • Leski J., and Czogala E. A new artificial neural networks based fuzzy inference system with moving consequents in if-then rules and selected applications. Fuzzy Sets Syst. 108 (1999) 289-297
    • (1999) Fuzzy Sets Syst. , vol.108 , pp. 289-297
    • Leski, J.1    Czogala, E.2
  • 23
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural modeling
    • Lin Y., and Cunningham III G.A. A new approach to fuzzy-neural modeling. IEEE Trans. Fuzzy Syst. 3 2 (1995) 190-197
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-197
    • Lin, Y.1    Cunningham III, G.A.2
  • 24
    • 0002834406 scopus 로고    scopus 로고
    • A self-organizing neural-network-based fuzzy system
    • Yin Wang, and Gang Rong. A self-organizing neural-network-based fuzzy system. Fuzzy Sets Syst. 103 (1999) 1-11
    • (1999) Fuzzy Sets Syst. , vol.103 , pp. 1-11
    • Yin Wang1    Gang Rong2
  • 25
    • 25144488422 scopus 로고    scopus 로고
    • A new modeling approach to fuzzy-neural networks architecture
    • (in Korean)
    • Park H.-S., Oh S.-K., and Yoon Y.-W. A new modeling approach to fuzzy-neural networks architecture. J. Cont. Automat. Syst. Eng. 7 August (8) (2001) 664-674 (in Korean)
    • (2001) J. Cont. Automat. Syst. Eng. , vol.7 , Issue.August 8 , pp. 664-674
    • Park, H.-S.1    Oh, S.-K.2    Yoon, Y.-W.3
  • 26
    • 0000628806 scopus 로고    scopus 로고
    • A study on the optimal design of polynomial neural networks structure
    • (in Korean)
    • Oh S.-K., Kim D.-W., and Park B.-J. A study on the optimal design of polynomial neural networks structure. Trans. Korean Inst. Electr. Eng. 49D March (3) (2000) 145-156 (in Korean)
    • (2000) Trans. Korean Inst. Electr. Eng. , vol.49 D , Issue.March 3 , pp. 145-156
    • Oh, S.-K.1    Kim, D.-W.2    Park, B.-J.3
  • 28
    • 0036529715 scopus 로고    scopus 로고
    • The design of self-organizing polynomial neural networks
    • Oh S.-K., and Pedrycz W. The design of self-organizing polynomial neural networks. Inform. Sci. 141 (2002) 237-258
    • (2002) Inform. Sci. , vol.141 , pp. 237-258
    • Oh, S.-K.1    Pedrycz, W.2
  • 29
    • 0038722717 scopus 로고    scopus 로고
    • Polynomial neural networks architecture: analysis and design
    • Oh S.-K., Pedrycz W., and Park B.-J. Polynomial neural networks architecture: analysis and design. Comput. Electr. Eng. 29 6 (2003) 703-725
    • (2003) Comput. Electr. Eng. , vol.29 , Issue.6 , pp. 703-725
    • Oh, S.-K.1    Pedrycz, W.2    Park, B.-J.3
  • 30
    • 15844362035 scopus 로고    scopus 로고
    • A study on the development of intelligent models and simulator concerning the pattern of an air pollutant emission in a thermal power plant
    • Technical Report, Korea Energy Management Corporation, Korea, in Korean
    • S.-K. Oh, A study on the development of intelligent models and simulator concerning the pattern of an air pollutant emission in a thermal power plant, Technical Report, Korea Energy Management Corporation, Korea, 2003 (in Korean).
    • (2003)
    • Oh, S.-K.1
  • 31
    • 0043092359 scopus 로고    scopus 로고
    • Hybrid Identification in fuzzy-neural networks
    • Oh S.-K., Pedrycz W., and Park H.-S. Hybrid Identification in fuzzy-neural networks. Fuzzy Sets Syst. 138 2 (2003) 399-426
    • (2003) Fuzzy Sets Syst. , vol.138 , Issue.2 , pp. 399-426
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3
  • 32
    • 0344493899 scopus 로고    scopus 로고
    • Rule-based multi-FNN Identification with the aid of evolutionary fuzzy granulation
    • Oh S.-K., Pedrycz W., and Park H.-S. Rule-based multi-FNN Identification with the aid of evolutionary fuzzy granulation. J. Knowledge-Based Syst. 17 1 (2004) 1-13
    • (2004) J. Knowledge-Based Syst. , vol.17 , Issue.1 , pp. 1-13
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3
  • 33
    • 0026943536 scopus 로고
    • Generating fuzzy rules from numerical data with applications
    • Wang L.X., and Mendel J.M. Generating fuzzy rules from numerical data with applications. IEEE Trans. Syst. Man Cybern. 22 6 (1992) 1414-1427
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 34
    • 0003093755 scopus 로고
    • Predicting the Mackey-Glass time series with cascade-correlation learning
    • Touretzky D., Hinton G., and Sejnowski T. (Eds). Carnegic Mellon University
    • Crowder III R.S. Predicting the Mackey-Glass time series with cascade-correlation learning. In: Touretzky D., Hinton G., and Sejnowski T. (Eds). Proceedings of the 1990 Connectionist Models Summer School. Carnegic Mellon University (1990) 117-123
    • (1990) Proceedings of the 1990 Connectionist Models Summer School , pp. 117-123
    • Crowder III, R.S.1
  • 35
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23 3 (1993) 665-685
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 36
    • 0032301756 scopus 로고    scopus 로고
    • Predicting a chaotic time series using a fuzzy neural network
    • Maguire L.P., Roche B., McGinnity T.M., and McDaid L.J. Predicting a chaotic time series using a fuzzy neural network. Inform. Sci. 112 (1998) 125-136
    • (1998) Inform. Sci. , vol.112 , pp. 125-136
    • Maguire, L.P.1    Roche, B.2    McGinnity, T.M.3    McDaid, L.J.4
  • 37
    • 0040949854 scopus 로고    scopus 로고
    • Automatic structure and parameter training methods for modeling of mechanical systems by recurrent neural networks
    • James Li C., and Huang T.-Y. Automatic structure and parameter training methods for modeling of mechanical systems by recurrent neural networks. Appl. Math. Model. 23 (1999) 933-944
    • (1999) Appl. Math. Model. , vol.23 , pp. 933-944
    • James Li, C.1    Huang, T.-Y.2
  • 38
    • 33144477025 scopus 로고    scopus 로고
    • Genetically optimized fuzzy polynomial neural networks
    • Oh S.-K., Pedrycz W., and Park H.-S. Genetically optimized fuzzy polynomial neural networks. IEEE Trans. Fuzzy Syst. 14 1 (2006) 124-144
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.1 , pp. 124-144
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3
  • 39
    • 34548137808 scopus 로고    scopus 로고
    • Genetic optimization of fuzzy polynomial neural networks
    • S.-K. Oh, W. Pedrycz, S.-B. Roh, Genetic optimization of fuzzy polynomial neural networks, IEEE. Trans. Ind. Electr. 54 (4) (2007) 2219-2238.
    • (2007) IEEE. Trans. Ind. Electr , vol.54 , Issue.4 , pp. 2219-2238
    • Oh, S.-K.1    Pedrycz, W.2    Roh, S.-B.3
  • 40
    • 17844390396 scopus 로고    scopus 로고
    • Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process
    • Nariman-Zadeh N., Darvizeh A., Jamali A., and Moeini A. Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. J. Mater. Process. Technol. 164-165 (2005) 1561-1571
    • (2005) J. Mater. Process. Technol. , vol.164-165 , pp. 1561-1571
    • Nariman-Zadeh, N.1    Darvizeh, A.2    Jamali, A.3    Moeini, A.4
  • 41
    • 0242493755 scopus 로고    scopus 로고
    • Polynomial harmonic GMDH learning networks for time series modeling
    • Nikolaev N.Y., and Iba H. Polynomial harmonic GMDH learning networks for time series modeling. Neural Netw. 16 10 (2003) 1527-1540
    • (2003) Neural Netw. , vol.16 , Issue.10 , pp. 1527-1540
    • Nikolaev, N.Y.1    Iba, H.2
  • 42
    • 0037381917 scopus 로고    scopus 로고
    • Face detection from cluttered images using a polynomial neural network
    • Huang L.-L., Shimizu A., Hagihara Y., and Kobatake H. Face detection from cluttered images using a polynomial neural network. Neurocomputing 51 (2003) 197-211
    • (2003) Neurocomputing , vol.51 , pp. 197-211
    • Huang, L.-L.1    Shimizu, A.2    Hagihara, Y.3    Kobatake, H.4
  • 43
    • 33749510330 scopus 로고    scopus 로고
    • Linguistic models as a framework of user-centric system modeling
    • Pedrycz W., and Kwak K.C. Linguistic models as a framework of user-centric system modeling. IEEE Trans. Syst. Man Cybern. A 36 4 (2006) 727-745
    • (2006) IEEE Trans. Syst. Man Cybern. A , vol.36 , Issue.4 , pp. 727-745
    • Pedrycz, W.1    Kwak, K.C.2
  • 44
    • 0037186681 scopus 로고    scopus 로고
    • Improving nonparametric regression methods by bagging and boosting
    • Borra S., and Ciaccio A.D. Improving nonparametric regression methods by bagging and boosting. Comput. Stat. Data Anal. 38 (2002) 407-420
    • (2002) Comput. Stat. Data Anal. , vol.38 , pp. 407-420
    • Borra, S.1    Ciaccio, A.D.2
  • 45
    • 10044221078 scopus 로고    scopus 로고
    • An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks
    • Huang G.B., Saratchandran P., and Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans. Syst. Man Cybern. B 34 6 (2004) 2284-2292
    • (2004) IEEE Trans. Syst. Man Cybern. B , vol.34 , Issue.6 , pp. 2284-2292
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 46
    • 55649101249 scopus 로고    scopus 로고
    • Optimization of fuzzy set-fuzzy systems based on IG by means of GAs with successive tuning method
    • Park K.J., Oh S.K., and Kim H.K. Optimization of fuzzy set-fuzzy systems based on IG by means of GAs with successive tuning method. J. Elect. Eng. Technol. 3 1 (2008) 101-107
    • (2008) J. Elect. Eng. Technol. , vol.3 , Issue.1 , pp. 101-107
    • Park, K.J.1    Oh, S.K.2    Kim, H.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.