메뉴 건너뛰기




Volumn 145, Issue 1, 2004, Pages 165-181

Self-organizing neurofuzzy networks in modeling software data

Author keywords

Computational Intelligence (CI); Design methodology; Genetic algorithms (GAs); Neurofuzzy networks (NFN); Polynomial neural networks (PNN); Self organizing neurofuzzy networks (SONFN); Software data

Indexed keywords

ARTIFICIAL INTELLIGENCE; FUZZY SETS; GENETIC ALGORITHMS; MATHEMATICAL MODELS; NEURAL NETWORKS; POLYNOMIALS; SELF ORGANIZING MAPS; SOFTWARE ENGINEERING;

EID: 2642548268     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2003.10.009     Document Type: Article
Times cited : (36)

References (16)
  • 4
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back propagation algorithm
    • Horikawa S., Furuhashi T., Uchigawa Y. On fuzzy modeling using fuzzy neural networks with the back propagation algorithm. IEEE Trans. Neural Networks. 3(5):1992;801-806.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchigawa, Y.3
  • 5
  • 6
    • 0001784588 scopus 로고
    • The group method of data handling: A rival of method of stochastic approximation
    • Ivahnenko A.G. The group method of data handling. a rival of method of stochastic approximation Soviet Automatic Control. 13(3):1968;43-55.
    • (1968) Soviet Automatic Control , vol.13 , Issue.3 , pp. 43-55
    • Ivahnenko, A.G.1
  • 7
    • 0030654389 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    • M. Kearns, D. Ron, Algorithmic stability and sanity-check bounds for leave-one-out cross-validation, Proc. 10th Ann. Conf. Computational Learning Theory, 1997, pp. 152-162.
    • (1997) Proc. 10th Ann. Conf. Computational Learning Theory , pp. 152-162
    • Kearns, M.1    Ron, D.2
  • 8
    • 0023349750 scopus 로고
    • An empirical validation of software cost estimation models
    • Kemerer C.F. An empirical validation of software cost estimation models. Comm. ACM. 30(5):1987;416-429.
    • (1987) Comm. ACM , vol.30 , Issue.5 , pp. 416-429
    • Kemerer, C.F.1
  • 11
    • 0011128392 scopus 로고    scopus 로고
    • Advanced polynomial neural networks architecture with new adaptive nodes
    • Oh S.-K., Kim D.-W., Park B.-J. Advanced polynomial neural networks architecture with new adaptive nodes. Trans. Control Automat. Systems Eng. 3(1):2001;43-50.
    • (2001) Trans. Control Automat. Systems Eng. , vol.3 , Issue.1 , pp. 43-50
    • Oh, S.-K.1    Kim, D.-W.2    Park, B.-J.3
  • 12
    • 0036529715 scopus 로고    scopus 로고
    • The design of self-organizing polynomial neural networks
    • Oh S.-K., Pedrycz W. The design of self-organizing polynomial neural networks. Inform. Sci. 141(3-4):2002;237-258.
    • (2002) Inform. Sci. , vol.141 , Issue.3-4 , pp. 237-258
    • Oh, S.-K.1    Pedrycz, W.2
  • 13
    • 0035791983 scopus 로고    scopus 로고
    • The hybrid multi-layer inference architecture and algorithm of FPNN based on FNN and PNN
    • B.-J. Park, S.-K. Oh, W. Pedrycz, The hybrid multi-layer inference architecture and algorithm of FPNN based on FNN and PNN, Proc. Joint 9th IFSA World Congress, 2001, pp. 1361-1366.
    • (2001) Proc. Joint 9th IFSA World Congress , pp. 1361-1366
    • Park, B.-J.1    Oh, S.-K.2    Pedrycz, W.3
  • 14
    • 0034205618 scopus 로고    scopus 로고
    • Empirical data modeling in software engineering using radial basis functions
    • Shin M., Goel A.L. Empirical data modeling in software engineering using radial basis functions. IEEE Trans. Software Eng. 26(6):2000;567-576.
    • (2000) IEEE Trans. Software Eng. , vol.26 , Issue.6 , pp. 567-576
    • Shin, M.1    Goel, A.L.2
  • 16
    • 0000389470 scopus 로고
    • A new effective learning algorithm for a neo fuzzy neuron model
    • T. Yamakawa, A new effective learning algorithm for a neo fuzzy neuron model, Proc. 5th IFSA World Conf. 1993, pp. 1017-1020.
    • (1993) Proc. 5th IFSA World Conf. , pp. 1017-1020
    • Yamakawa, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.