-
1
-
-
0003880161
-
-
New York and London, Garland Publishing., Alberts B, Bray D,et al
-
Molecular Biology of the Cell 1994, New York and London, Garland Publishing., Alberts B, Bray D,et al.
-
(1994)
Molecular Biology of the Cell
-
-
-
3
-
-
0141515750
-
Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs.
-
10.1093/bioinformatics/btg222, 12967962
-
Park K, Kanehisa M. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 2003, 19(13):1656-1663. 10.1093/bioinformatics/btg222, 12967962.
-
(2003)
Bioinformatics
, vol.19
, Issue.13
, pp. 1656-1663
-
-
Park, K.1
Kanehisa, M.2
-
4
-
-
0034697980
-
Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.
-
10.1006/jmbi.2000.3903, 10891285
-
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300:1005-1016. 10.1006/jmbi.2000.3903, 10891285.
-
(2000)
J. Mol. Biol.
, vol.300
, pp. 1005-1016
-
-
Emanuelsson, O.1
Nielsen, H.2
Brunak, S.3
von Heijne, G.4
-
5
-
-
33646861792
-
MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs, and amino acid composition.
-
10.1093/bioinformatics/btl002, 16428265
-
Höglund A, Donnes P, Blum T, Adolph HW, Kohlbacher O. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs, and amino acid composition. Bioinformatics 2006, 22(10):1158-1165. 10.1093/bioinformatics/btl002, 16428265.
-
(2006)
Bioinformatics
, vol.22
, Issue.10
, pp. 1158-1165
-
-
Höglund, A.1
Donnes, P.2
Blum, T.3
Adolph, H.W.4
Kohlbacher, O.5
-
6
-
-
56649094293
-
An Automated Combination of Kernels for Predicting Protein Subcellular Localization.
-
Springer. Lecture Notes in Bioinformatics.
-
Ong CS, Zien A. An Automated Combination of Kernels for Predicting Protein Subcellular Localization. Proceedings of the 8th Workshop on Algorithms in Bioinformatics (WABI) 2008, 186-179. Springer. Lecture Notes in Bioinformatics..
-
(2008)
Proceedings of the 8th Workshop on Algorithms in Bioinformatics (WABI)
, pp. 186-1179
-
-
Ong, C.S.1
Zien, A.2
-
7
-
-
55449129236
-
Refining Protein Subcellular Localization.
-
10.1371/journal.pcbi.0010066, 1289393, 16322766
-
Scott MS, Calafell SJ, Thomas DY, Hallett MT. Refining Protein Subcellular Localization. PLoS Comput Biol 2005, 1(6):e66. 10.1371/journal.pcbi.0010066, 1289393, 16322766.
-
(2005)
PLoS Comput Biol
, vol.1
, Issue.6
-
-
Scott, M.S.1
Calafell, S.J.2
Thomas, D.Y.3
Hallett, M.T.4
-
8
-
-
0032938624
-
Prediction of Protein Subcellular Locations using Markov Chain Models.
-
10.1016/S0014-5793(99)00506-2, 10356977
-
Yuan Y. Prediction of Protein Subcellular Locations using Markov Chain Models. FEBS Letters 1999, 451:23-26. 10.1016/S0014-5793(99)00506-2, 10356977.
-
(1999)
FEBS Letters
, vol.451
, pp. 23-26
-
-
Yuan, Y.1
-
9
-
-
67349209853
-
Next-generation DNA sequencing techniques.
-
10.1016/j.nbt.2008.12.009, 19429539
-
Ansorge W. Next-generation DNA sequencing techniques. New Biotechnology 2009, 25(4):195-203. 10.1016/j.nbt.2008.12.009, 19429539.
-
(2009)
New Biotechnology
, vol.25
, Issue.4
, pp. 195-203
-
-
Ansorge, W.1
-
11
-
-
33749252873
-
-
MIT Press, Chapelle O, Schöelkopf B, Zien A
-
Semi-Supervised Learning 2006, MIT Press, Chapelle O, Schöelkopf B, Zien A.
-
(2006)
Semi-Supervised Learning
-
-
-
13
-
-
0031620208
-
Combining labeled and unlabeled data with co-training.
-
New York, NY, USA: ACM
-
Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. Proc. of COLT' 98 1998, 92-100. New York, NY, USA: ACM.
-
(1998)
Proc. of COLT' 98
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
14
-
-
0001938951
-
Transductive Inference for Text Classification using Support Vector Machines.
-
Joachims T. Transductive Inference for Text Classification using Support Vector Machines. In Proc. of the ICML'99 1999, 200-209.
-
(1999)
In Proc. of the ICML'99
, pp. 200-209
-
-
Joachims, T.1
-
15
-
-
84859913704
-
Word sense disambiguation using label propagation based semi-supervised learning.
-
Niu ZY, Ji DH, Tan CL. Word sense disambiguation using label propagation based semi-supervised learning. In Proc. of the ACL 2005,
-
(2005)
In Proc. of the ACL
-
-
Niu, Z.Y.1
Ji, D.H.2
Tan, C.L.3
-
16
-
-
44649115610
-
Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization.
-
Goldberg A, Zhu X. Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization. In HLT-NAACL 2006 Workshop on Textgraphs 2006,
-
(2006)
In HLT-NAACL 2006 Workshop on Textgraphs
-
-
Goldberg, A.1
Zhu, X.2
-
17
-
-
77951193230
-
Semi-Supervised Sequence Labeling with Self-Learned Features.
-
Washington, DC, USA
-
Qi Y, Kuksa P, Collobert R, Sadamasa K, Kavukcuoglu K, Weston J. Semi-Supervised Sequence Labeling with Self-Learned Features. Proc. of ICDM 2009, 428-437. Washington, DC, USA.
-
(2009)
Proc. of ICDM
, pp. 428-437
-
-
Qi, Y.1
Kuksa, P.2
Collobert, R.3
Sadamasa, K.4
Kavukcuoglu, K.5
Weston, J.6
-
18
-
-
39049145967
-
Semi-supervised graph-based hyperspectral image classification.
-
Camps-valls G, Member S, B TV, Zhou D. Semi-supervised graph-based hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 2007, 45:2044-3054.
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, pp. 2044-3054
-
-
Camps-valls, G.1
Member, S.2
B, T.V.3
Zhou, D.4
-
19
-
-
35748972060
-
Semi-supervised learning for peptide identification from shotgun proteomics datasets.
-
10.1038/nmeth1113, 17952086
-
Käll L, Canterbury J, Weston J, Noble W, MacCoss M. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nature Methods 2007, 4(11):923-925. 10.1038/nmeth1113, 17952086.
-
(2007)
Nature Methods
, vol.4
, Issue.11
, pp. 923-925
-
-
Käll, L.1
Canterbury, J.2
Weston, J.3
Noble, W.4
MacCoss, M.5
-
20
-
-
14344255620
-
Kernel conditional random fields: Representation and clique selection.
-
Lafferty J, Zhu X, Liu Y. Kernel conditional random fields: Representation and clique selection. In The 21st ICML 2004,
-
(2004)
In The 21st ICML
-
-
Lafferty, J.1
Zhu, X.2
Liu, Y.3
-
21
-
-
65449154328
-
Efficient use of unlabeled data for protein sequence classification: a comparative study.
-
2681072, 19426450
-
Kuksa P, Huang PH, Pavlovic V. Efficient use of unlabeled data for protein sequence classification: a comparative study. BMC Bioinformatics 2009, 10(Suppl 4):S2. 2681072, 19426450.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.SUPPL. 4
-
-
Kuksa, P.1
Huang, P.H.2
Pavlovic, V.3
-
22
-
-
60849118651
-
Semi-supervised protein subcellular localization.
-
10.1186/1471-2105-10-S1-S47, 2648770, 19208149
-
Xu Q, Hu DH, Xue H, Yu W, Yang Q. Semi-supervised protein subcellular localization. BMC Bioinformatics 2009, 10(Suppl 1):S47. 10.1186/1471-2105-10-S1-S47, 2648770, 19208149.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.SUPPL. 1
-
-
Xu, Q.1
Hu, D.H.2
Xue, H.3
Yu, W.4
Yang, Q.5
-
23
-
-
84888285677
-
Improve Computer-Aided Diagnosis with Machine Learning Techniques Using Undiagnosed Samples.
-
Li M, Zhou ZH. Improve Computer-Aided Diagnosis with Machine Learning Techniques Using Undiagnosed Samples. 2007,
-
(2007)
-
-
Li, M.1
Zhou, Z.H.2
-
24
-
-
0035478854
-
Random Forests.
-
Breiman L. Random Forests. Machine Learning 2001, 45:5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
26
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm.
-
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 1977, 39:1-38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
27
-
-
0000259511
-
Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms.
-
10.1162/089976698300017197, 9744903
-
Dietterich TG. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 1998, 10:1895-1923. 10.1162/089976698300017197, 9744903.
-
(1998)
Neural Computation
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
28
-
-
35048818988
-
Semi-supervised Protein Classification Using Cluster Kernels.
-
Weston J, Leslie CS, Zhou D, Elisseeff A, Noble WS. Semi-supervised Protein Classification Using Cluster Kernels. In NIPS 2004,
-
(2004)
In NIPS
-
-
Weston, J.1
Leslie, C.S.2
Zhou, D.3
Elisseeff, A.4
Noble, W.S.5
-
29
-
-
34547969350
-
Label Propogation and Quadratic Criterion.
-
MIT Press, Chapelle O, Schoelkopf B, Zien A,
-
Bengio Y, Delalleau O, Le Roux N. Label Propogation and Quadratic Criterion. Semi-Supervised Learning 2006, 193-217. MIT Press, Chapelle O, Schoelkopf B, Zien A,.
-
(2006)
Semi-Supervised Learning
, pp. 193-217
-
-
Bengio, Y.1
Delalleau, O.2
Le Roux, N.3
-
31
-
-
78049527893
-
Semi-supervised learning via Gaussian processes.
-
Saul L, Weiss Y, Bottou L
-
Lawrence ND, Jordan MI. Semi-supervised learning via Gaussian processes. In NIPS-17 2005, Saul L, Weiss Y, Bottou L.
-
(2005)
In NIPS-17
-
-
Lawrence, N.D.1
Jordan, M.I.2
-
35
-
-
33750729556
-
Manifold Regularization: a Geometric Framework for Learning from Labeled and Unlabeled Examples.
-
Belkin M, Niyogi P, Sindhwani V. Manifold Regularization: a Geometric Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research 2006, 7:2399-2434.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
36
-
-
33644505547
-
Learning Accurate and Concise Naive Bayes Classifiers from Attribute Value Taxonomies and Data.
-
10.1007/s10115-005-0211-z, 2846370, 20351793
-
Zhang J, Kang DK, Silvescu A, Honavar V. Learning Accurate and Concise Naive Bayes Classifiers from Attribute Value Taxonomies and Data. Knowledge and Information Systems 2006, 9(2):157-179. 10.1007/s10115-005-0211-z, 2846370, 20351793.
-
(2006)
Knowledge and Information Systems
, vol.9
, Issue.2
, pp. 157-179
-
-
Zhang, J.1
Kang, D.K.2
Silvescu, A.3
Honavar, V.4
-
37
-
-
0030282113
-
The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length.
-
Ron D, Singer Y, Tishby N. The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length. In Machine Learning 1996, 117-149.
-
(1996)
In Machine Learning
, pp. 117-149
-
-
Ron, D.1
Singer, Y.2
Tishby, N.3
-
38
-
-
84888282008
-
TargetP
-
TargetP. , http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
-
-
-
-
39
-
-
84888285455
-
PSORTdb v.2.0
-
PSORTdb v.2.0. , http://www.psort.org/dataset/datasetv2.html
-
-
-
-
40
-
-
0042622254
-
PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria.
-
10.1093/nar/gkg602, 169008, 12824378
-
Gardy JL, et al. PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria. NAR 2003, 31(13):3613-17. 10.1093/nar/gkg602, 169008, 12824378.
-
(2003)
NAR
, vol.31
, Issue.13
, pp. 3613-3617
-
-
Gardy, J.L.1
-
42
-
-
0025952277
-
Divergence measures based on the Shannon entropy.
-
Lin J. Divergence measures based on the Shannon entropy. IEEE Trans. on Inf. Thr. 1991, 37:145-151.
-
(1991)
IEEE Trans. on Inf. Thr.
, vol.37
, pp. 145-151
-
-
Lin, J.1
|