메뉴 건너뛰기




Volumn 11, Issue SUPPL. 8, 2010, Pages

Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models

Author keywords

[No Author keywords available]

Indexed keywords

DETERMINATION OF PROTEINS; EXPECTATION MAXIMIZATION; PROTEIN SUBCELLULAR LOCALIZATION; PROTEIN SUBCELLULAR LOCALIZATION PREDICTION; SEMI-SUPERVISED METHOD; SEMI-SUPERVISED TRAININGS; SUBCELLULAR LOCALIZATIONS; SUPERVISED MACHINE LEARNING;

EID: 78049467251     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-S8-S6     Document Type: Article
Times cited : (15)

References (42)
  • 1
    • 0003880161 scopus 로고
    • New York and London, Garland Publishing., Alberts B, Bray D,et al
    • Molecular Biology of the Cell 1994, New York and London, Garland Publishing., Alberts B, Bray D,et al.
    • (1994) Molecular Biology of the Cell
  • 3
    • 0141515750 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs.
    • 10.1093/bioinformatics/btg222, 12967962
    • Park K, Kanehisa M. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 2003, 19(13):1656-1663. 10.1093/bioinformatics/btg222, 12967962.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1656-1663
    • Park, K.1    Kanehisa, M.2
  • 4
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.
    • 10.1006/jmbi.2000.3903, 10891285
    • Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300:1005-1016. 10.1006/jmbi.2000.3903, 10891285.
    • (2000) J. Mol. Biol. , vol.300 , pp. 1005-1016
    • Emanuelsson, O.1    Nielsen, H.2    Brunak, S.3    von Heijne, G.4
  • 5
    • 33646861792 scopus 로고    scopus 로고
    • MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs, and amino acid composition.
    • 10.1093/bioinformatics/btl002, 16428265
    • Höglund A, Donnes P, Blum T, Adolph HW, Kohlbacher O. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs, and amino acid composition. Bioinformatics 2006, 22(10):1158-1165. 10.1093/bioinformatics/btl002, 16428265.
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1158-1165
    • Höglund, A.1    Donnes, P.2    Blum, T.3    Adolph, H.W.4    Kohlbacher, O.5
  • 6
    • 56649094293 scopus 로고    scopus 로고
    • An Automated Combination of Kernels for Predicting Protein Subcellular Localization.
    • Springer. Lecture Notes in Bioinformatics.
    • Ong CS, Zien A. An Automated Combination of Kernels for Predicting Protein Subcellular Localization. Proceedings of the 8th Workshop on Algorithms in Bioinformatics (WABI) 2008, 186-179. Springer. Lecture Notes in Bioinformatics..
    • (2008) Proceedings of the 8th Workshop on Algorithms in Bioinformatics (WABI) , pp. 186-1179
    • Ong, C.S.1    Zien, A.2
  • 7
    • 55449129236 scopus 로고    scopus 로고
    • Refining Protein Subcellular Localization.
    • 10.1371/journal.pcbi.0010066, 1289393, 16322766
    • Scott MS, Calafell SJ, Thomas DY, Hallett MT. Refining Protein Subcellular Localization. PLoS Comput Biol 2005, 1(6):e66. 10.1371/journal.pcbi.0010066, 1289393, 16322766.
    • (2005) PLoS Comput Biol , vol.1 , Issue.6
    • Scott, M.S.1    Calafell, S.J.2    Thomas, D.Y.3    Hallett, M.T.4
  • 8
    • 0032938624 scopus 로고    scopus 로고
    • Prediction of Protein Subcellular Locations using Markov Chain Models.
    • 10.1016/S0014-5793(99)00506-2, 10356977
    • Yuan Y. Prediction of Protein Subcellular Locations using Markov Chain Models. FEBS Letters 1999, 451:23-26. 10.1016/S0014-5793(99)00506-2, 10356977.
    • (1999) FEBS Letters , vol.451 , pp. 23-26
    • Yuan, Y.1
  • 9
    • 67349209853 scopus 로고    scopus 로고
    • Next-generation DNA sequencing techniques.
    • 10.1016/j.nbt.2008.12.009, 19429539
    • Ansorge W. Next-generation DNA sequencing techniques. New Biotechnology 2009, 25(4):195-203. 10.1016/j.nbt.2008.12.009, 19429539.
    • (2009) New Biotechnology , vol.25 , Issue.4 , pp. 195-203
    • Ansorge, W.1
  • 11
    • 33749252873 scopus 로고    scopus 로고
    • MIT Press, Chapelle O, Schöelkopf B, Zien A
    • Semi-Supervised Learning 2006, MIT Press, Chapelle O, Schöelkopf B, Zien A.
    • (2006) Semi-Supervised Learning
  • 13
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training.
    • New York, NY, USA: ACM
    • Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. Proc. of COLT' 98 1998, 92-100. New York, NY, USA: ACM.
    • (1998) Proc. of COLT' 98 , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 14
    • 0001938951 scopus 로고    scopus 로고
    • Transductive Inference for Text Classification using Support Vector Machines.
    • Joachims T. Transductive Inference for Text Classification using Support Vector Machines. In Proc. of the ICML'99 1999, 200-209.
    • (1999) In Proc. of the ICML'99 , pp. 200-209
    • Joachims, T.1
  • 15
    • 84859913704 scopus 로고    scopus 로고
    • Word sense disambiguation using label propagation based semi-supervised learning.
    • Niu ZY, Ji DH, Tan CL. Word sense disambiguation using label propagation based semi-supervised learning. In Proc. of the ACL 2005,
    • (2005) In Proc. of the ACL
    • Niu, Z.Y.1    Ji, D.H.2    Tan, C.L.3
  • 16
    • 44649115610 scopus 로고    scopus 로고
    • Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization.
    • Goldberg A, Zhu X. Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization. In HLT-NAACL 2006 Workshop on Textgraphs 2006,
    • (2006) In HLT-NAACL 2006 Workshop on Textgraphs
    • Goldberg, A.1    Zhu, X.2
  • 19
    • 35748972060 scopus 로고    scopus 로고
    • Semi-supervised learning for peptide identification from shotgun proteomics datasets.
    • 10.1038/nmeth1113, 17952086
    • Käll L, Canterbury J, Weston J, Noble W, MacCoss M. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nature Methods 2007, 4(11):923-925. 10.1038/nmeth1113, 17952086.
    • (2007) Nature Methods , vol.4 , Issue.11 , pp. 923-925
    • Käll, L.1    Canterbury, J.2    Weston, J.3    Noble, W.4    MacCoss, M.5
  • 20
    • 14344255620 scopus 로고    scopus 로고
    • Kernel conditional random fields: Representation and clique selection.
    • Lafferty J, Zhu X, Liu Y. Kernel conditional random fields: Representation and clique selection. In The 21st ICML 2004,
    • (2004) In The 21st ICML
    • Lafferty, J.1    Zhu, X.2    Liu, Y.3
  • 21
    • 65449154328 scopus 로고    scopus 로고
    • Efficient use of unlabeled data for protein sequence classification: a comparative study.
    • 2681072, 19426450
    • Kuksa P, Huang PH, Pavlovic V. Efficient use of unlabeled data for protein sequence classification: a comparative study. BMC Bioinformatics 2009, 10(Suppl 4):S2. 2681072, 19426450.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 4
    • Kuksa, P.1    Huang, P.H.2    Pavlovic, V.3
  • 22
    • 60849118651 scopus 로고    scopus 로고
    • Semi-supervised protein subcellular localization.
    • 10.1186/1471-2105-10-S1-S47, 2648770, 19208149
    • Xu Q, Hu DH, Xue H, Yu W, Yang Q. Semi-supervised protein subcellular localization. BMC Bioinformatics 2009, 10(Suppl 1):S47. 10.1186/1471-2105-10-S1-S47, 2648770, 19208149.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 1
    • Xu, Q.1    Hu, D.H.2    Xue, H.3    Yu, W.4    Yang, Q.5
  • 23
    • 84888285677 scopus 로고    scopus 로고
    • Improve Computer-Aided Diagnosis with Machine Learning Techniques Using Undiagnosed Samples.
    • Li M, Zhou ZH. Improve Computer-Aided Diagnosis with Machine Learning Techniques Using Undiagnosed Samples. 2007,
    • (2007)
    • Li, M.1    Zhou, Z.H.2
  • 24
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests.
    • Breiman L. Random Forests. Machine Learning 2001, 45:5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 27
    • 0000259511 scopus 로고    scopus 로고
    • Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms.
    • 10.1162/089976698300017197, 9744903
    • Dietterich TG. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 1998, 10:1895-1923. 10.1162/089976698300017197, 9744903.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 29
    • 34547969350 scopus 로고    scopus 로고
    • Label Propogation and Quadratic Criterion.
    • MIT Press, Chapelle O, Schoelkopf B, Zien A,
    • Bengio Y, Delalleau O, Le Roux N. Label Propogation and Quadratic Criterion. Semi-Supervised Learning 2006, 193-217. MIT Press, Chapelle O, Schoelkopf B, Zien A,.
    • (2006) Semi-Supervised Learning , pp. 193-217
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 31
    • 78049527893 scopus 로고    scopus 로고
    • Semi-supervised learning via Gaussian processes.
    • Saul L, Weiss Y, Bottou L
    • Lawrence ND, Jordan MI. Semi-supervised learning via Gaussian processes. In NIPS-17 2005, Saul L, Weiss Y, Bottou L.
    • (2005) In NIPS-17
    • Lawrence, N.D.1    Jordan, M.I.2
  • 35
    • 33750729556 scopus 로고    scopus 로고
    • Manifold Regularization: a Geometric Framework for Learning from Labeled and Unlabeled Examples.
    • Belkin M, Niyogi P, Sindhwani V. Manifold Regularization: a Geometric Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research 2006, 7:2399-2434.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 36
    • 33644505547 scopus 로고    scopus 로고
    • Learning Accurate and Concise Naive Bayes Classifiers from Attribute Value Taxonomies and Data.
    • 10.1007/s10115-005-0211-z, 2846370, 20351793
    • Zhang J, Kang DK, Silvescu A, Honavar V. Learning Accurate and Concise Naive Bayes Classifiers from Attribute Value Taxonomies and Data. Knowledge and Information Systems 2006, 9(2):157-179. 10.1007/s10115-005-0211-z, 2846370, 20351793.
    • (2006) Knowledge and Information Systems , vol.9 , Issue.2 , pp. 157-179
    • Zhang, J.1    Kang, D.K.2    Silvescu, A.3    Honavar, V.4
  • 37
    • 0030282113 scopus 로고    scopus 로고
    • The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length.
    • Ron D, Singer Y, Tishby N. The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length. In Machine Learning 1996, 117-149.
    • (1996) In Machine Learning , pp. 117-149
    • Ron, D.1    Singer, Y.2    Tishby, N.3
  • 38
    • 84888282008 scopus 로고    scopus 로고
    • TargetP
    • TargetP. , http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
  • 39
    • 84888285455 scopus 로고    scopus 로고
    • PSORTdb v.2.0
    • PSORTdb v.2.0. , http://www.psort.org/dataset/datasetv2.html
  • 40
    • 0042622254 scopus 로고    scopus 로고
    • PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria.
    • 10.1093/nar/gkg602, 169008, 12824378
    • Gardy JL, et al. PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria. NAR 2003, 31(13):3613-17. 10.1093/nar/gkg602, 169008, 12824378.
    • (2003) NAR , vol.31 , Issue.13 , pp. 3613-3617
    • Gardy, J.L.1
  • 42
    • 0025952277 scopus 로고
    • Divergence measures based on the Shannon entropy.
    • Lin J. Divergence measures based on the Shannon entropy. IEEE Trans. on Inf. Thr. 1991, 37:145-151.
    • (1991) IEEE Trans. on Inf. Thr. , vol.37 , pp. 145-151
    • Lin, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.