메뉴 건너뛰기




Volumn 29, Issue 24, 2010, Pages 2544-2556

Direct effects testing: A two-stage procedure to test for effect size and variable importance for correlated binary predictors and a binary response

Author keywords

Contingency table; Direct effect; High dimensional; Lasso; Noncentral hypergeometric distribution; Sparsity

Indexed keywords

ALGORITHM; ARTICLE; CORRELATION ANALYSIS; DIRECT EFFECT TESTING; EFFECT SIZE; HYPOTHESIS; PREDICTION; PROBABILITY; SIMULATION; STATISTICAL ANALYSIS; UNCERTAINTY;

EID: 77958482571     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.4014     Document Type: Article
Times cited : (3)

References (32)
  • 1
    • 0000957593 scopus 로고
    • Principal components regression with exploratory statistical research
    • Massey W. Principal components regression with exploratory statistical research. Journal of the American Statistical Association 1965; 60:234-246.
    • (1965) Journal of the American Statistical Association , vol.60 , pp. 234-246
    • Massey, W.1
  • 2
    • 0011803601 scopus 로고
    • Soft Modeling by Latent Variables: The Nonlinear Iterative Partial Least Squares Approach
    • Academic Press: New York,
    • Wold H. Soft Modeling by Latent Variables: The Nonlinear Iterative Partial Least Squares Approach. Academic Press: New York, 1975.
    • (1975)
    • Wold, H.1
  • 3
    • 0343494519 scopus 로고
    • Encyclopedia of Statistical Sciences
    • Wiley: New York,
    • Hoerl A, Kennard R. Ridge regression. Encyclopedia of Statistical Sciences. Wiley: New York, 1988; 129-136.
    • (1988) Ridge regression , pp. 129-136
    • Hoerl, A.1    Kennard, R.2
  • 4
    • 34249037555 scopus 로고    scopus 로고
    • Sparse sufficient dimension reduction
    • Li L. Sparse sufficient dimension reduction. Biometrika 2007; 94:603-613.
    • (2007) Biometrika , vol.94 , pp. 603-613
    • Li, L.1
  • 5
    • 69049091975 scopus 로고    scopus 로고
    • High dimensional variable selection
    • Wasserman L, Roeder K. High dimensional variable selection. Annals of Statistics 2009; 37:2178-2201.
    • (2009) Annals of Statistics , vol.37 , pp. 2178-2201
    • Wasserman, L.1    Roeder, K.2
  • 8
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Breiman L. Better subset regression using the nonnegative garrote. Technometrics 1995; 37:373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 9
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: statistical estimation when p is much larger than n
    • Candes E, Tao T. The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics 2007; 35:2313-2351.
    • (2007) Annals of Statistics , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 10
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultra-high dimensional feature space
    • Fan J, Lv J. Sure independence screening for ultra-high dimensional feature space. Journal of the Royal Statistical Society, Series B 2008; 70:849-911.
    • (2008) Journal of the Royal Statistical Society, Series B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 11
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • Knight K, Fu W. Asymptotics for Lasso-type estimators. Annals of Statistics 2000; 28:1356-1378.
    • (2000) Annals of Statistics , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 17
    • 44849141742 scopus 로고    scopus 로고
    • Hierarchical testing of variable importance
    • Meinshausen N. Hierarchical testing of variable importance. Biometrika 2008; 95:265-278.
    • (2008) Biometrika , vol.95 , pp. 265-278
    • Meinshausen, N.1
  • 19
    • 70349349170 scopus 로고    scopus 로고
    • Causality
    • Cambridge University Press: Cambridge,
    • Pearl J. Causality. Cambridge University Press: Cambridge, 2009.
    • (2009)
    • Pearl, J.1
  • 20
    • 0003663926 scopus 로고
    • Generalized Linear Models
    • Chapman & Hall: London,
    • McCullagh P, Nelder JA. Generalized Linear Models. Chapman & Hall: London, 1989.
    • (1989)
    • McCullagh, P.1    Nelder, J.A.2
  • 21
    • 77956888248 scopus 로고
    • Simple improvements on Cornfield's approximation to the mean of a noncentral hypergeometric random variable
    • Levin B. Simple improvements on Cornfield's approximation to the mean of a noncentral hypergeometric random variable. Biometrika 1984; 71:630-632.
    • (1984) Biometrika , vol.71 , pp. 630-632
    • Levin, B.1
  • 22
    • 77958511596 scopus 로고    scopus 로고
    • GenABEL: Genome-Wide SNP Association Analysis. R package version 1.4-0,
    • Aulchenko Y, Struchalin M. GenABEL: Genome-Wide SNP Association Analysis. R package version 1.4-0, 2008.
    • (2008)
    • Aulchenko, Y.1    Struchalin, M.2
  • 23
    • 5344244656 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Development Core Team.R Foundation for Statistical Computing: Vienna, Austria, ISBN 3-900051-07-0.
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2008; ISBN 3-900051-07-0.
    • (2008)
  • 24
    • 77958455721 scopus 로고    scopus 로고
    • 1 Regularization Path for Generalized Linear Models and Cox Proportional Hazards Model. R package version 0.94,
    • 1 Regularization Path for Generalized Linear Models and Cox Proportional Hazards Model. R package version 0.94, 2007.
    • (2007)
    • Park, M.Y.1    Hastie, T.2
  • 26
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning
    • Springer: Berlin,
    • Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer: Berlin, 2001.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 27
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika 1976; 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 29
  • 30
    • 0032714352 scopus 로고    scopus 로고
    • Genomic control for association studies
    • Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55:997-1004.
    • (1999) Biometrics , vol.55 , pp. 997-1004
    • Devlin, B.1    Roeder, K.2
  • 31
    • 0035528921 scopus 로고    scopus 로고
    • Genomic Control, a new approach to genetic-based association studies
    • Devlin B, Roeder K, Wasserman L. Genomic Control, a new approach to genetic-based association studies. Theoretical Population Biology 2001; 60:155-166.
    • (2001) Theoretical Population Biology , vol.60 , pp. 155-166
    • Devlin, B.1    Roeder, K.2    Wasserman, L.3
  • 32
    • 33646247395 scopus 로고    scopus 로고
    • Centralizing the non-central chi-square: a new method to correct for population stratification in case-control association studies
    • Gorroochurn P, Heiman GA, Hodge SE, Greenberg DA. Centralizing the non-central chi-square: a new method to correct for population stratification in case-control association studies. Genetic Epidemiology 2006; 30:277-289.
    • (2006) Genetic Epidemiology , vol.30 , pp. 277-289
    • Gorroochurn, P.1    Heiman, G.A.2    Hodge, S.E.3    Greenberg, D.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.