-
1
-
-
0025725905
-
Instance-based learning algorithms
-
Aha, D., Kibler, D., and Albert, M. 1991. Instance-based learning algorithms. Machine Learning, 6(1):37-66.
-
(1991)
Machine Learning
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.1
Kibler, D.2
Albert, M.3
-
3
-
-
0003802343
-
-
Wadsworth & Brooks, CA
-
Breiman, L., Friedman, J.H., Olshen, R., and Stone, C. 1984. Classification and Regression Trees. Wadsworth & Brooks, CA.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.3
Stone, C.4
-
6
-
-
0347709675
-
Comparison of various routines for unknown attribute value processing the covering paradigm
-
Bruha, I. and Franck, F. 1996. Comparison of various routines for unknown attribute value processing the covering paradigm. IJPRAI 10(8):939-955
-
(1996)
IJPRAI
, vol.10
, Issue.8
, pp. 939-955
-
-
Bruha, I.1
Franck, F.2
-
7
-
-
0001929348
-
ASSISTANT 86: A knowledge elicitation tool for sophisticated users
-
Sigma Press, 1987
-
Cestnik, B., Kononenko, I., and Bratko, I. 1987. ASSISTANT 86: A knowledge elicitation tool for sophisticated users, Proc. of 2nd European Working Session on Learning, Sigma Press, 1987. pp. 31-45.
-
(1987)
Proc. of 2nd European Working Session on Learning
, pp. 31-45
-
-
Cestnik, B.1
Kononenko, I.2
Bratko, I.3
-
10
-
-
34249966007
-
The CN2 induction algorithm
-
Clark, P. and Niblett, T. 1989. The CN2 induction algorithm. Machine Learning, 3(4):261-283.
-
(1989)
Machine Learning
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
11
-
-
0002914363
-
Rule induction with CN2: Some recent improvement
-
Berlin, Springer-Verlag
-
Clark, P. and Boswell, R. 1991. Rule induction with CN2: Some recent improvement. Proc. of 5th ECML, Berlin, Springer-Verlag.
-
(1991)
Proc. of 5th ECML
-
-
Clark, P.1
Boswell, R.2
-
12
-
-
80053403826
-
Ensemble methods in machine learning
-
J. Kittler and F. Roli, (Eds.), Springer, Berlin
-
Dietterich, T. 2000. Ensemble methods in machine learning. In Lecture Notes in Computer Science Vol. 1867, J. Kittler and F. Roli, (Eds.), Springer, Berlin: pp. 1-15.
-
(2000)
Lecture Notes in Computer Science
, vol.1867
, pp. 1-15
-
-
Dietterich, T.1
-
13
-
-
0011984911
-
Experiments with noise filtering in a medical domain
-
San Francisco, CA
-
Gamberger, D., Lavrac, N., and Groselj, C. 1999. Experiments with noise filtering in a medical domain. Proc. of 16th ICML Conference, San Francisco, CA, pp. 143-151.
-
(1999)
Proc. of 16th ICML Conference
, pp. 143-151
-
-
Gamberger, D.1
Lavrac, N.2
Groselj, C.3
-
14
-
-
0034143132
-
Noise detection and elimination in data preprocessing: Experiments in medical domains
-
Gamberger, D. Lavrac, N., and Dzeroski, S. 2000. Noise detection and elimination in data preprocessing: Experiments in medical domains. Applied Artificial Intelligence, 14:205-223.
-
(2000)
Applied Artificial Intelligence
, vol.14
, pp. 205-223
-
-
Gamberger, D.1
Lavrac, N.2
Dzeroski, S.3
-
15
-
-
4444353068
-
A comparison of several approaches to missing attribute values in data mining
-
Grzymala-Busse, J.W. and Hu, M. 2000. A comparison of several approaches to missing attribute values in data mining. Rough Sets and Current Trends in Computing, pp. 378-385.
-
(2000)
Rough Sets and Current Trends in Computing
, pp. 378-385
-
-
Grzymala-Busse, J.W.1
Hu, M.2
-
16
-
-
0003372320
-
Discovering information patterns and data cleaning
-
AAAI/MIT Press
-
Guyon, I. Matic, N., and Vapnik, V. 1996. Discovering information patterns and data cleaning. Advances in Knowledge Discovety and Data Mining, AAAI/MIT Press, pp. 181-203.
-
(1996)
Advances in Knowledge Discovety and Data Mining
, pp. 181-203
-
-
Guyon, I.1
Matic, N.2
Vapnik, V.3
-
17
-
-
0017480535
-
A recursive partitioning decision rule for nonparametric classification
-
Friedman, J.H. 1977. A recursive partitioning decision rule for nonparametric classification. IEEE Transaction on Computers, 26(4):404-408.
-
(1977)
IEEE Transaction on Computers
, vol.26
, Issue.4
, pp. 404-408
-
-
Friedman, J.H.1
-
18
-
-
0013003957
-
Distributed learning on very large data sets
-
Hall, L., Bowyer, K., Kegelmeyer, W., Moore, T., and Chao, C. 2000. Distributed learning on very large data sets, KDD-00 Workshop on Distributed and Parallel Knowledge Discovery, pp. 79-84.
-
(2000)
KDD-00 Workshop on Distributed and Parallel Knowledge Discovery
, pp. 79-84
-
-
Hall, L.1
Bowyer, K.2
Kegelmeyer, W.3
Moore, T.4
Chao, C.5
-
19
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R.C. 1993. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11.
-
(1993)
Machine Learning
, vol.11
-
-
Holte, R.C.1
-
20
-
-
33646585878
-
A grey-based nearest neighbor approach for predicting missing attribute values
-
Taiwan, NSC-90-2213-E-011-052
-
Huang, C.C. and Lee, H.M. 2001, A grey-based nearest neighbor approach for predicting missing attribute values. Proc. of 2001 National Computer Symposium, Taiwan, NSC-90-2213-E-011-052.
-
(2001)
Proc. of 2001 National Computer Symposium
-
-
Huang, C.C.1
Lee, H.M.2
-
21
-
-
33646546132
-
-
IBM Almaden Research, Synthetic classification data generator
-
IBM Synthetic Data. IBM Almaden Research, Synthetic classification data generator, http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata, html#elassSynData.
-
IBM Synthetic Data
-
-
-
23
-
-
0003563503
-
Experiments in automatic learning of medical diagnostic rules
-
Jozef Stefan Institute, Ljubljana, Yugoslavia
-
Kononenko, I., Bratko, I., and Roskar, E. 1984. Experiments in automatic learning of medical diagnostic rules. Technical Report, Jozef Stefan Institute, Ljubljana, Yugoslavia.
-
(1984)
Technical Report
-
-
Kononenko, I.1
Bratko, I.2
Roskar, E.3
-
24
-
-
78149286827
-
Probabilistic noise identification and data cleaning
-
FL, USA
-
Kubica, J. and Moore, A. 2003. Probabilistic noise identification and data cleaning. Proc. of ICDM, FL, USA
-
(2003)
Proc. of ICDM
-
-
Kubica, J.1
Moore, A.2
-
25
-
-
85124125604
-
Heterogeneous uncertainty sampling for supervised learning
-
NJ, Morgan Kaufmann
-
Lewis, D. and Catlett, J. 1994. Heterogeneous uncertainty sampling for supervised learning. Proc. of the 11th ICML Conference, NJ, Morgan Kaufmann: pp. 148-156.
-
(1994)
Proc. of the 11th ICML Conference
, pp. 148-156
-
-
Lewis, D.1
Catlett, J.2
-
26
-
-
77956238117
-
Improving medical/biological data classification performance by wavelet preprocessing
-
Japan
-
Li, Q. Li, T., Zhu, S., and Kambhamettu, C. 2002. Improving medical/biological data classification performance by wavelet preprocessing. Proc. of International Conference on Data Mining (ICDM 2002), Japan.
-
(2002)
Proc. of International Conference on Data Mining (ICDM 2002)
-
-
Li, Q.1
Li, T.2
Zhu, S.3
Kambhamettu, C.4
-
27
-
-
85005299854
-
The multi-purpose incremental learning system AQ15 and its testing application to three medical domains
-
Michalski, R.S., Mozetic, I., Hong, J., and Lavrac, N. 1986. The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. Proceedings of AAAI, pp. 1041-1045.
-
(1986)
Proceedings of AAAI
, pp. 1041-1045
-
-
Michalski, R.S.1
Mozetic, I.2
Hong, J.3
Lavrac, N.4
-
30
-
-
0002515248
-
Efficient progressive sampling
-
Provost, F., Jensen, D., and Oates, T. 1999. Efficient progressive sampling. Proc. of the 5th ACM SIGKDD, pp. 23-32.
-
(1999)
Proc. of the 5th ACM SIGKDD
, pp. 23-32
-
-
Provost, F.1
Jensen, D.2
Oates, T.3
-
31
-
-
0141771188
-
A survey of methods for scaling up inductive algorithms
-
Provost, F. and Kolluri, V. 1999. A survey of methods for scaling up inductive algorithms. Data Mining and Knowledge Discovery, 3(2):131-169.
-
(1999)
Data Mining and Knowledge Discovery
, vol.3
, Issue.2
, pp. 131-169
-
-
Provost, F.1
Kolluri, V.2
-
32
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J.R. 1986. Induction of decision trees. Machine Learning, 1(1):81-106.
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
35
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R.E. 1990. The strength of weak learnability. Machine Learning, 5(2):197-227.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
37
-
-
0012657799
-
Prototype and feature selection by sampling and random mutation hill climbing algorithms
-
New Brunswick, NJ. Morgan Kaufmann
-
Skalak, D. 1994. Prototype and feature selection by sampling and random mutation hill climbing algorithms, Proc. of 11th ICML Conference, New Brunswick, NJ. Morgan Kaufmann, pp. 293-301.
-
(1994)
Proc. of 11th ICML Conference
, pp. 293-301
-
-
Skalak, D.1
-
38
-
-
0347999457
-
Distinguishing exception from noise in non-monotonic learning
-
Srinivasan, A., Muggleton, S., and Bain, M. 1992. Distinguishing exception from noise in non-monotonic learning. Proc. of 2nd Inductive Logic Programming Workshop, pp. 97-107.
-
(1992)
Proc. of 2nd Inductive Logic Programming Workshop
, pp. 97-107
-
-
Srinivasan, A.1
Muggleton, S.2
Bain, M.3
-
40
-
-
0016969272
-
An experiment with edited nearest-neighbor rule
-
Tomek, I. 1976. An experiment with edited nearest-neighbor rule. IEEE Trans. on Sys. Man and Cyber., 6(6):448-452.
-
(1976)
IEEE Trans. on Sys. Man and Cyber.
, vol.6
, Issue.6
, pp. 448-452
-
-
Tomek, I.1
-
46
-
-
0015361129
-
Asymptotic properties of nearest neighbor rales using edited data
-
Wilson, D. 1972. Asymptotic properties of nearest neighbor rales using edited data. IEEE Trans. on SMC, 2:408-421.
-
(1972)
IEEE Trans. on SMC
, vol.2
, pp. 408-421
-
-
Wilson, D.1
-
47
-
-
0343081513
-
Reduction techniques for examplar-based learning algorithms
-
Wilson, D. and Martinez, T.R. 2000. Reduction techniques for examplar-based learning algorithms. Machine Learning, 38(3):257-268.
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 257-268
-
-
Wilson, D.1
Martinez, T.R.2
-
48
-
-
0000027741
-
Learning structural descriptions from examples
-
McGraw-Hill, New York
-
Winston, P. 1975. Learning structural descriptions from examples. The Psychology of Computer Vision, McGraw-Hill, New York.
-
(1975)
The Psychology of Computer Vision
-
-
Winston, P.1
-
50
-
-
0032049926
-
-
American Society for Information Science
-
Wu, X. 1998. Rule induction with extension matrices. American Society for Information Science, 49(5):435-454.
-
(1998)
Rule Induction with Extension Matrices
, vol.49
, Issue.5
, pp. 435-454
-
-
Wu, X.1
-
52
-
-
9444231677
-
Error detection and impact-sensitive instance ranking in noisy datasets
-
(AAAI-2004), July 25-29, San Jose, California
-
Zhu, X., Wu, X., and Yang, Y. 2004. Error detection and impact-sensitive instance ranking in noisy datasets. Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-2004), July 25-29, San Jose, California.
-
(2004)
Proceedings of the 19th National Conference on Artificial Intelligence
-
-
Zhu, X.1
Wu, X.2
Yang, Y.3
-
53
-
-
19544372918
-
Class noise vs attribute noise: A quantitative study of their impacts
-
Zhu, X. and Wu, X. 2004. Class noise vs attribute noise: A quantitative study of their impacts. Artificial Intelligence Review, 22(3-4):177-210.
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.3-4
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
|