메뉴 건너뛰기




Volumn 19, Issue 5, 2010, Pages 647-677

Learning SVM with complex multiple kernels evolved by genetic programming

Author keywords

genetic programming; hybrid model; Multiple kernel learning; SVM

Indexed keywords

CLASSIFICATION ACCURACY; DATA SETS; EVOLUTIONARY SEARCH; FITNESS FUNCTIONS; HYBRID MODEL; KERNEL BASED CLASSIFIERS; MATHEMATICAL EXPRESSIONS; MULTIPLE KERNEL LEARNING; MULTIPLE KERNELS; NUMERICAL EXPERIMENTS; REAL WORLD DATA; REAL-WORLD APPLICATION; SIMPLE KERNEL; SINGLE KERNEL; SVM; SVM ALGORITHM; UCI REPOSITORY;

EID: 77958120029     PISSN: 02182130     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218213010000352     Document Type: Article
Times cited : (7)

References (59)
  • 3
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, Choosing multiple parameters for support vector machines, Machine Learning 46(1/3) (2002) 131-159. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 9
    • 33646008572 scopus 로고    scopus 로고
    • Appropriate kernel functions for support vector machine learning with sequences of symbolic data
    • J. Winkler, M. Niranjan, and N. D. Lawrence (Eds.),(Springer), Deterministic and Statistical Methods in Machine Learning
    • B. Vanschoenwinkel, B. Manderick, Appropriate kernel functions for support vector machine learning with sequences of symbolic data, in: J. Winkler, M. Niranjan, and N. D. Lawrence (Eds.), Deterministic and Statistical Methods in Machine Learning, Vol.3635 of LNCS (Springer, 2004), pp. 256-280.
    • (2004) LNCS , vol.3635 , pp. 256-280
    • Vanschoenwinkel, B.1    Manderick, B.2
  • 11
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the SMO algorithm
    • ed. C. E. Brodley (ACM)
    • F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, in ICML, ed. C. E. Brodley (ACM, 2004), pp. 41- 48.
    • (2004) ICML , pp. 41-48
    • Bach, F.R.1    Lanckriet, G.R.G.2    Jordan, M.I.3
  • 14
    • 35048816088 scopus 로고    scopus 로고
    • Combined kernel function for support vector machine and learning method based on evolutionary algorithm
    • N. R. Pal, N. Kasabov, R. K. Mudi, S. Pal, and S. K. Parui (Eds.), of LNCS (Springer, 2004
    • H.-N. Nguyen, S.-Y. Ohn, and W.-J. Choi, Combined kernel function for support vector machine and learning method based on evolutionary algorithm, in: N. R. Pal, N. Kasabov, R. K. Mudi, S. Pal, and S. K. Parui (Eds.), Neural Information Pro- cessing, 11th International Conference, ICONIP 2004, Vol.3316 of LNCS (Springer, 2004), pp. 1273-1278.
    • (2004) Neural Information Pro- Cessing, 11th International Conference, ICONIP , vol.3316 , pp. 1273-1278
    • Nguyen, H.-N.1    Ohn, S.-Y.2    Choi, W.-J.3
  • 15
    • 35048874390 scopus 로고    scopus 로고
    • Evolutionary parameter estimation algorithm for combined kernel function in support vector machine
    • C.-H. Chi and K.-Y. Lam (Eds.), of LNCS (Springer, 2004
    • S.-Y. Ohn, H.-N. Nguyen, and S.-D. Chi, Evolutionary parameter estimation algorithm for combined kernel function in support vector machine, in: C.-H. Chi and K.-Y. Lam (Eds.), Content Computing, Advanced Workshop on Content Computing, AWCC 2004, Vol.3309 of LNCS (Springer, 2004), pp. 481-486.
    • (2004) Content Computing, Advanced Workshop on Content Computing, AWCC 2004 , vol.3309 , pp. 481-486
    • Ohn, S.-Y.1    Nguyen, H.-N.2    Chi, S.-D.3
  • 16
    • 24944435114 scopus 로고    scopus 로고
    • Determining optimal decision model for support vector machine by genetic algorithm
    • J. Zhang, J.-H. He, and Y. Fu (Eds.), Computational and Information Science, First International Sympo- sium, CIS 2004, (Springer)
    • S.-Y. Ohn, H.-N. Nguyen, D. S. Kim, and J. S. Park, Determining optimal decision model for support vector machine by genetic algorithm, in: J. Zhang, J.-H. He, and Y. Fu (Eds.), Computational and Information Science, First International Sympo- sium, CIS 2004, Vol.3314 of LNCS (Springer, 2004), pp. 895-902.
    • (2004) LNCS , vol.3314 , pp. 895-902
    • Ohn, S.-Y.1    Nguyen, H.-N.2    Kim, D.S.3    Park, J.S.4
  • 17
    • 47249105274 scopus 로고    scopus 로고
    • Genetically constructed kernels for support vector machines
    • Springer
    • R. S. S. Lessmann and S. Crone, Genetically constructed kernels for support vector machines, in Proc. of German Operations Research (Springer, 2005), pp. 257-262.
    • (2005) Proc. of German Operations Research , pp. 257-262
    • Lessmann, R.S.S.1    Crone, S.2
  • 23
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical, in Advances
    • eds. B. Scholkopf, C. J. C. Burges, and A. J. Smola (MIT Press)
    • T. Joachims, Making large-scale SVM learning practical, in Advances in Kernel Method - Support Vector Learning, eds. B. Scholkopf, C. J. C. Burges, and A. J. Smola (MIT Press, 1999), pp. 169-184.
    • (1999) Kernel Method - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 24
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Kluwer Academic
    • J. C. Burges, A tutorial on support vector machines for pattern recognition, in Knowl- edge Discovery and Data Mining, Vol.2 (Kluwer Academic, 1998), pp. 121-167.
    • (1998) Knowl- Edge Discovery and Data Mining , vol.2 , pp. 121-167
    • Burges, J.C.1
  • 26
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • M. A. Aizerman, E. M. Braverman, and L. I. Rozonóer, Theoretical foundations of the potential function method in pattern recognition learning, Automation and Remote Control 25 (1964) 821-837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonóer, L.I.3
  • 27
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • B. E. Boser, I. Guyon, and V. Vapnik, A training algorithm for optimal margin classifiers, in COLT, 1992, pp. 144-152.
    • (1992) COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.2    Vapnik, V.3
  • 28
    • 0346451740 scopus 로고    scopus 로고
    • T. K. Leen, T. G. Dietterich, and V. Tresp (Eds.) NIPS (MIT Press
    • B. Schölkopf, The kernel trick for distances in T. K. Leen, T. G. Dietterich, and V. Tresp (Eds.) NIPS (MIT Press, 2000), pp. 301-307.
    • (2000) The Kernel Trick for Distances , pp. 301-307
    • Schölkopf, B.1
  • 29
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, Support-vector networks, Machine Learning 20 (1995) 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 31
    • 29144521785 scopus 로고    scopus 로고
    • The genetic kernel support vector machine: Description and evaluation
    • T. Howley and M. G. Madden, The genetic kernel support vector machine: Description and evaluation, Artif. Intell. Rev. 24(3-4) (2005) 379-395.
    • (2005) Artif. Intell. Rev. , vol.24 , Issue.3-4 , pp. 379-395
    • Howley, T.1    Madden, M.G.2
  • 32
    • 33749836050 scopus 로고    scopus 로고
    • An evolutionary approach to automatic kernel construction
    • S. D. Kollias, A. Stafylopatis, W. Duch, and E. Oja (Eds.), Artificial Neural Networks - ICANN, 2006, Springer
    • T. Howley and M. G. Madden, An evolutionary approach to automatic kernel construction, in: S. D. Kollias, A. Stafylopatis, W. Duch, and E. Oja (Eds.), Artificial Neural Networks - ICANN 2006, Vol.4132 of LNCS (Springer, 2006), pp. 417-426.
    • (2006) LNCS , vol.4132 , pp. 417-426
    • Howley, T.1    Madden, M.G.2
  • 34
    • 33750228090 scopus 로고    scopus 로고
    • Genetic programming for kernel-based learning with co-evolving subsets selection
    • T. P. Runarsson, H.-G. Beyer, E. K. Burke, J. J. M. Guervos, L. D.Whitley, and X. Yao (Eds.), Parallel Prob- lem Solving from Nature - PPSN IX, (9th PPSN'06), Springer
    • C. Gagne, M. Schoenauer, M. Sebag, and M. Tomassini, Genetic programming for kernel-based learning with co-evolving subsets selection, in: T. P. Runarsson, H.-G. Beyer, E. K. Burke, J. J. M. Guervos, L. D.Whitley, and X. Yao (Eds.), Parallel Prob- lem Solving from Nature - PPSN IX, (9th PPSN'06), Vol.4193 of LNCS (Springer, 2006), pp. 1008-1017.
    • (2006) LNCS , vol.4193 , pp. 1008-1017
    • Gagne, C.1    Schoenauer, M.2    Sebag, M.3    Tomassini, M.4
  • 39
    • 31844435594 scopus 로고    scopus 로고
    • Hierarchic bayesian models for kernel learning
    • M. Girolami and S. Rogers, Hierarchic bayesian models for kernel learning, in ICML, 2005, pp. 241-248.
    • (2005) ICML , pp. 241-248
    • Girolami, M.1    Rogers, S.2
  • 40
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. J. C. Burges, A. J. Smola (Eds.), (MIT Press
    • J. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Schölkopf, C. J. C. Burges, A. J. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning (MIT Press, 1999), pp. 185-208.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 42
    • 0002881568 scopus 로고
    • Uniform crossover in genetic algorithms
    • G. Syswerda, Uniform crossover in genetic algorithms, in ICGA, 1989, pp. 2-9.
    • (1989) ICGA , pp. 2-9
    • Syswerda, G.1
  • 43
    • 0001842954 scopus 로고
    • A study of reproduction in generational and steady state genetic algorithms
    • G. J. E. Rawlins (Ed.)
    • G. Syswerda, A study of reproduction in generational and steady state genetic algorithms, in: G. J. E. Rawlins (Ed.), Proceedings of FOGA Conference (Morgan Kaufmann, 1991), pp. 94-101.
    • (1991) Proceedings of FOGA Conference (Morgan Kaufmann) , pp. 94-101
    • Syswerda, G.1
  • 48
    • 85027514443 scopus 로고
    • Parallel optimization of evolutionary algorithms
    • Y. Davidor, H.-P. Schwefel (Eds.), Lecture Notes in Computer Science (Springer Verlag
    • T. Bäck, Parallel optimization of evolutionary algorithms, in: Y. Davidor, H.-P. Schwefel (Eds.), Parallel Problem Solving From Nature - PPSN III, Vol.866 of Lecture Notes in Computer Science (Springer Verlag, 1994), pp. 418-427.
    • (1994) Parallel Problem Solving from Nature - PPSN III , vol.866 , pp. 418-427
    • Bäck, T.1
  • 49
    • 84958987754 scopus 로고    scopus 로고
    • The effect of extensive use of the mutation operator on generalization in genetic programming using sparse data sets
    • W. Banzhaf, F. D. Francone, and P. Nordin, The effect of extensive use of the mutation operator on generalization in genetic programming using sparse data sets, Lecture Notes in Computer Science 1141 (1996) 300-309.
    • (1996) Lecture Notes in Computer Science , vol.1141 , pp. 300-309
    • Banzhaf, W.1    Francone, F.D.2    Nordin, P.3
  • 50
    • 0041312683 scopus 로고    scopus 로고
    • Genetic programming with one-point crossover
    • P. K. Chawdhry, R. Roy, R. K. Pant (Eds.), Springer-Verlag, London
    • R. Poli and W. B. Langdon, Genetic programming with one-point crossover, in: P. K. Chawdhry, R. Roy, R. K. Pant (Eds.), Soft Computing in Engineering Design and Manufacturing (Springer-Verlag, London, 1997), pp. 180-189.
    • (1997) Soft Computing in Engineering Design and Manufacturing , pp. 180-189
    • Poli, R.1    Langdon, W.B.2
  • 53
    • 77958130084 scopus 로고    scopus 로고
    • Machines noyaux pour lapprentissage statistique
    • M. R. Hestenes and E. Stiefel, Machines noyaux pour lapprentissage statistique, Technologies de l'information 4(1) (2007) 1-20.
    • (2007) Technologies de l'Information , vol.4 , Issue.1 , pp. 1-20
    • Hestenes, M.R.1    Stiefel, E.2
  • 55
    • 0004196396 scopus 로고    scopus 로고
    • An investigation into the sensitivity of genetic programming to the frequency of leaf selection during subtree crossover
    • J. R. Koza, D. E. Goldberg, D. B. Fogel, R. L. Riolo (Eds.), (MIT Press)
    • P. J. Angeline, An investigation into the sensitivity of genetic programming to the frequency of leaf selection during subtree crossover, in: J. R. Koza, D. E. Goldberg, D. B. Fogel, R. L. Riolo (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference (MIT Press, 1996), pp. 21-29.
    • (1996) Genetic Programming 1996: Proceedings of the First Annual Conference , pp. 21-29
    • Angeline, P.J.1
  • 58
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11) (1998) 2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.