메뉴 건너뛰기




Volumn 23, Issue 8, 2010, Pages 1291-1302

Artificial immune classifier with swarm learning

Author keywords

Artificial immune systems; Classification; Fault diagnosis; Induction motors; Particle swarm optimization

Indexed keywords

ARTIFICIAL IMMUNE; ARTIFICIAL IMMUNE SYSTEM; BELONG TO; BENCHMARK DATA; CLASSIFICATION; CLASSIFICATION TECHNIQUE; COMPUTATIONAL SYSTEM; DATA SETS; FAULT DIAGNOSIS; MEMORY CELL; MUTATION OPERATORS; NATURAL IMMUNE SYSTEMS; PARTICLE SWARM; PATTERN RECOGNITION AND CLASSIFICATION; THREE PROBLEMS;

EID: 77958074586     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2010.06.007     Document Type: Article
Times cited : (31)

References (36)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D.W. Aha, D. Kibler, and M.K. Albert Instance-based learning algorithms Mach. Learn. 6 1 1991 37 66
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 2
    • 77957929022 scopus 로고    scopus 로고
    • A multi-objective artificial immune algorithm for parameter optimization in support vector machine
    • 10.1016/j.asoc.2009.11.003
    • I. Aydin A multi-objective artificial immune algorithm for parameter optimization in support vector machine Appl. Soft Comput 2009 10.1016/j.asoc.2009.11.003
    • (2009) Appl. Soft Comput
    • Aydin, I.1
  • 4
    • 52249107843 scopus 로고    scopus 로고
    • Artificial immune inspired fault detection algorithm based on fuzzy clustering and genetic algorithm methods
    • Istanbul
    • Aydin, I., Karakose, M., Akin, E., 2008. Artificial immune inspired fault detection algorithm based on fuzzy clustering and genetic algorithm methods. In: IEEE Computational Intelligence for Measurement System and Applications, Istanbul, vol. 1, pp. 9398.
    • (2008) IEEE Computational Intelligence for Measurement System and Applications , vol.1 , pp. 93-98
    • Aydin, I.1    Karakose, M.2    Akin, E.3
  • 6
    • 0034297416 scopus 로고    scopus 로고
    • A review of induction motors signature analysis as a medium for faults detection
    • M.E.H. Benbouzid A review of induction motors signature analysis as a medium for faults detection IEEE Trans. Ind. Electron. 47 2000 984 993
    • (2000) IEEE Trans. Ind. Electron. , vol.47 , pp. 984-993
    • Benbouzid, M.E.H.1
  • 10
    • 44849099940 scopus 로고    scopus 로고
    • Broken rotor bar detection in line-fed induction machines using complex wavelet analysis of startup transients
    • F. Briz, M.W. Degner, P. Garca, and D. Bragado Broken rotor bar detection in line-fed induction machines using complex wavelet analysis of startup transients IEEE Trans. Ind. Appl. 44 2008 760 768
    • (2008) IEEE Trans. Ind. Appl. , vol.44 , pp. 760-768
    • Briz, F.1    Degner, M.W.2    Garca, P.3    Bragado, D.4
  • 12
  • 13
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space
    • M. Clerc, and J. Kennedy The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans. Evolut. Comput. 6 1 2002 58 73
    • (2002) IEEE Trans. Evolut. Comput. , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 15
    • 33846309260 scopus 로고    scopus 로고
    • Advances in artificial immune system
    • D. Dasgupta Advances in artificial immune system IEEE Comput. Intell. Mag. 1 4 2006 40 49
    • (2006) IEEE Comput. Intell. Mag. , vol.1 , Issue.4 , pp. 40-49
    • Dasgupta, D.1
  • 16
    • 0012708708 scopus 로고    scopus 로고
    • AiNet: An artificial immune network for data analysis
    • L.N. de Castro, and F.J. Von Zuben aiNet: an artificial immune network for data analysis H.A. Abbass, R.A. Sarker, C.S. Newton, Data Mining: A Heuristic Approach 2001 Idea Group Publishing USA 231 259
    • (2001) Data Mining: A Heuristic Approach , pp. 231-259
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 18
    • 0036613006 scopus 로고    scopus 로고
    • Learning and optimization using the clonal selection principles
    • L.N. de Castro, and F.J. Von Zuben Learning and optimization using the clonal selection principles IEEE Trans. Evolut. Comput. 6 3 2002 239 251
    • (2002) IEEE Trans. Evolut. Comput. , vol.6 , Issue.3 , pp. 239-251
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 21
    • 3543106606 scopus 로고    scopus 로고
    • Anomaly Detection Using Real-Valued Negative Selection
    • DOI 10.1023/A:1026195112518
    • F.A. Gonzalez, and D. Dasgupta Anomaly detection using real-valued negative selection Genet. Progr. Evol. Mach. 4 2003 383 403 (Pubitemid 37283494)
    • (2003) Genet. Progr. Evol. Mach. , vol.4 , Issue.4 , pp. 383-403
    • Gonzalez, F.A.1    Dasgupta, D.2
  • 22
    • 34548500577 scopus 로고    scopus 로고
    • Application areas of AIS: The past, the present and the future
    • E. Hart, and J. Timmis Application areas of AIS: the past, the present and the future Appl. Soft Comput. 8 1 2008 191 201
    • (2008) Appl. Soft Comput. , vol.8 , Issue.1 , pp. 191-201
    • Hart, E.1    Timmis, J.2
  • 23
    • 53749086973 scopus 로고    scopus 로고
    • A negative selection algorithm for classification and reduction of the noise effect
    • K. Igawa, and H. Ohashi A negative selection algorithm for classification and reduction of the noise effect Appl. Soft Comput. 9 2009 431 439
    • (2009) Appl. Soft Comput. , vol.9 , pp. 431-439
    • Igawa, K.1    Ohashi, H.2
  • 24
    • 0015956495 scopus 로고
    • Towards a network theory of the immune system
    • N.K. Jerne Towards a network theory of the immune system Annu. Immunol. 125 C 1974 373 389
    • (1974) Annu. Immunol. , vol.125 , Issue.C , pp. 373-389
    • Jerne, N.K.1
  • 27
    • 0034870039 scopus 로고    scopus 로고
    • Toward an artificial immune system for network intrusion detection: An investigation of dynamic clonal selection
    • Honolulu, Hawaii
    • Kim, J., Bentley, P., 2002. Toward an artificial immune system for network intrusion detection: an investigation of dynamic clonal selection. In: Proceedings of the Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, pp. 12441252.
    • (2002) Proceedings of the Congress on Evolutionary Computation (CEC 2002) , pp. 1244-1252
    • Kim, J.1    Bentley, P.2
  • 28
    • 67349201365 scopus 로고    scopus 로고
    • Accurate diagnosis of induction machine faults using optimal timefrequency representations
    • A. Lebaroud, and G. Clerc Accurate diagnosis of induction machine faults using optimal timefrequency representations Eng. Appl. Artif. Intell. 22 4 2009 815 822
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.4 , pp. 815-822
    • Lebaroud, A.1    Clerc, G.2
  • 29
    • 35148874988 scopus 로고    scopus 로고
    • Generating complete classifier systems using a simple artificial immune system
    • K. Leung, F. Cheong, and C. Cheong Generating complete classifier systems using a simple artificial immune system IEEE Trans. Syst. Man Cybernet.Part B 37 5 2007 1344 1356
    • (2007) IEEE Trans. Syst. Man Cybernet.Part B , vol.37 , Issue.5 , pp. 1344-1356
    • Leung, K.1    Cheong, F.2    Cheong, C.3
  • 30
    • 0024472594 scopus 로고
    • Immune network theory
    • A.S. Perelson Immune network theory Immunol. Rev. 110 1989 5 36
    • (1989) Immunol. Rev. , vol.110 , pp. 5-36
    • Perelson, A.S.1
  • 31
    • 58949102919 scopus 로고    scopus 로고
    • Use of particle swarm optimization for machinery fault detection
    • B. Samanta, and C. Nataraj Use of particle swarm optimization for machinery fault detection Eng. Appl. Artif. Intell. 22 2 2009 308 316
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.2 , pp. 308-316
    • Samanta, B.1    Nataraj, C.2
  • 32
  • 33
  • 36
    • 31444446724 scopus 로고    scopus 로고
    • An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery
    • DOI 10.1109/TGRS.2005.861548
    • Y. Zhong, L. Zhang, B. Huang, and P. Li An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery IEEE Trans. Geosci. Remote Sens. 44 2 2006 420 431 (Pubitemid 43149277)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.2 , pp. 420-431
    • Zhong, Y.1    Zhang, L.2    Huang, B.3    Li, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.