-
3
-
-
17444438778
-
New support vector algorithms
-
May
-
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, "New Support Vector Algorithms," Neural Computation, vol. 12, no. 5, pp. 1207-1245, May 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
4
-
-
35048860348
-
Nonlinear system identification based on an improved support vector regression estimator
-
L. Zhang, and Y. G. Xi, "Nonlinear System Identification Based on an Improved Support Vector Regression Estimator," In Lecture Notes in Computer Science, Advances in Neural Networks - ISNN 2004, Vol. 3137, pp. 586-591, 2004.
-
(2004)
Lecture Notes in Computer Science, Advances in Neural Networks - ISNN 2004
, vol.3137
, pp. 586-591
-
-
Zhang, L.1
Xi, Y.G.2
-
5
-
-
77955479541
-
Fuzzy rule-based support vector regression system
-
L. Wang, Z. C. Mu, and H. Guo, "Fuzzy rule-based support vector regression system," Journal of Control Theory and Applications, vol. 3, no. 3, pp. 230-234, 2005.
-
(2005)
Journal of Control Theory and Applications
, vol.3
, Issue.3
, pp. 230-234
-
-
Wang, L.1
Mu, Z.C.2
Guo, H.3
-
7
-
-
0031334889
-
Improved training algorithm for support vector machines
-
[Online]. Available
-
E. Osuna, R. Freund, and F. Girosi, "Improved training algorithm for support vector machines," in Proc. NNSP'97, 1997, vol. 2, pp. 276-285. [Online]. Available, http://citeseer.ist.psu.edu/osuna97improved.html.
-
(1997)
Proc. NNSP'97
, vol.2
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
8
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Schölkopf, B., Burges, C.J.C., Smola, A.J. Eds., Cambridge, MA: MIT Press
-
J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," In Advances in Kernel Methods: Support Vector Machines, Schölkopf, B., Burges, C.J.C., Smola, A.J. Eds., Cambridge, MA: MIT Press, 1998.
-
(1998)
Advances in Kernel Methods: Support Vector Machines
-
-
Platt, J.C.1
-
9
-
-
0002714543
-
Making large-scale SVM learning practical
-
Schölkopf, B., Burges, C.J.C., Smola, A.J. Eds., Cambridge, MA: MIT Press
-
T. Joachims, "Making large-scale SVM learning practical," In Advances in Kernel Methods: Support Vector Machines, Schölkopf, B., Burges, C.J.C., Smola, A.J. Eds., Cambridge, MA: MIT Press, 1998.
-
(1998)
Advances in Kernel Methods: Support Vector Machines
-
-
Joachims, T.1
-
10
-
-
0000545946
-
Improvements to platt's SMO algorithm for SVM classifier design
-
S. S. Keerthi, S. K. Shevade, C. S. S. Bhattacharyya, and K. R. K. Murthy, "Improvements to Platt's SMO algorithm for SVM classifier design," Neural Computing, Vol. 13, pp. 637-649, 2001.
-
(2001)
Neural Computing
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.S.S.3
Murthy, K.R.K.4
-
11
-
-
0036158552
-
A simple decomposition method for support vector machines
-
C. W. Hsu, C. J. Lin, "A simple decomposition method for support vector machines," Machine Learning, Vol. 46, pp. 291-314, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 291-314
-
-
Hsu, C.W.1
Lin, C.J.2
-
12
-
-
33750600332
-
A novel sequential minimal optimization algorithm for support vector regression
-
Neural Information Processing - 13th International Conference, ICONIP 2006, Proceedings
-
J. Guo, and N. Takahashi and T. Nishi, "A Novel Sequential Minimal Optimization Algorithm for Support Vector Regression," Lecture Notes in Computer Science, Neural Information Processing, vol. 4232, pp. 827-836, Oct. 2006. (Pubitemid 44681575)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4232
, pp. 827-836
-
-
Guo, J.1
Takahashi, N.2
Nishi, T.3
-
13
-
-
49149114060
-
Global convergence of SMO algorithm for support vector regression
-
June
-
N. Takahashi, J. Guo, and T. Nishi, "Global Convergence of SMO Algorithm for Support Vector Regression," IEEE Trans. on Neural Networks, vol. 19, no. 6, pp. 971-982, June 2008.
-
(2008)
IEEE Trans. on Neural Networks
, vol.19
, Issue.6
, pp. 971-982
-
-
Takahashi, N.1
Guo, J.2
Nishi, T.3
|