메뉴 건너뛰기




Volumn 4232 LNCS, Issue , 2006, Pages 827-836

A novel sequential minimal optimization algorithm for support vector regression

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; OPTIMIZATION; PROBLEM SOLVING; QUADRATIC PROGRAMMING; REGRESSION ANALYSIS;

EID: 33750600332     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11893028_92     Document Type: Conference Paper
Times cited : (13)

References (6)
  • 2
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
    • Platt, J. C.: Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Machines, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press (1998)
    • (1998) Advances in Kernel Methods: Support Vector Machines
    • Platt, J.C.1
  • 5
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • Flake, G. W., Lawrence, S.: Efficient SVM regression training with SMO, Machine Learning 46 (2002) 271-290
    • (2002) Machine Learning , vol.46 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 6
    • 33750593523 scopus 로고    scopus 로고
    • Convergence proof of a sequential minimal optimization algorithm for support vector regression
    • Guo, J., Takahashi, N., Nishi, T.: Convergence proof of a sequential minimal optimization algorithm for support vector regression. In: Proc. of IJCNN'06 (2006)
    • (2006) Proc. of IJCNN'06
    • Guo, J.1    Takahashi, N.2    Nishi, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.