메뉴 건너뛰기




Volumn 11, Issue 1, 2011, Pages 1439-1447

Employing multiple-kernel support vector machines for counterfeit banknote recognition

Author keywords

Balanced error rate; Banknote recognition; Multiple kernel learning; Semi definite programming; Support vector machine

Indexed keywords

BANKNOTE RECOGNITION; BUSINESS TRANSACTION; EFFICIENT METHOD; ERROR RATE; KERNEL LEARNING; KERNEL MATRICES; KERNEL WEIGHT; LUMINANCE HISTOGRAMS; MATRIX; MULTIPLE KERNELS; NON-NEGATIVITY; OPTIMAL WEIGHT; SDP METHODS; SEMI-DEFINITE PROGRAMMING; SVM CLASSIFIERS; SYSTEM-BASED; TIME AND SPACE;

EID: 77957889304     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.04.015     Document Type: Article
Times cited : (62)

References (42)
  • 1
    • 0033300605 scopus 로고    scopus 로고
    • Banknote recognition by means of optimized masks, neural networks and genetic algorithms
    • F. Takeda, T. Nishikage, and S. Omatu Banknote recognition by means of optimized masks, neural networks and genetic algorithms Engineering Applications of Artificial Intelligence 12 2 1999 175 184
    • (1999) Engineering Applications of Artificial Intelligence , vol.12 , Issue.2 , pp. 175-184
    • Takeda, F.1    Nishikage, T.2    Omatu, S.3
  • 2
    • 0010570099 scopus 로고    scopus 로고
    • A neural network-based model for paper currency recognition and verification
    • A. Frosini, M. Gori, and P. Priami A neural network-based model for paper currency recognition and verification IEEE Transactions on Neural Networks 7 6 1996 1482 1490
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1482-1490
    • Frosini, A.1    Gori, M.2    Priami, P.3
  • 3
    • 2142813789 scopus 로고    scopus 로고
    • Employing optimized combinations of one-class classifiers for automated currency validation
    • C. He, M. Girolami, and G. Ross Employing optimized combinations of one-class classifiers for automated currency validation Pattern Recognition 37 6 2004 1085 1096
    • (2004) Pattern Recognition , vol.37 , Issue.6 , pp. 1085-1096
    • He, C.1    Girolami, M.2    Ross, G.3
  • 5
    • 34249753618 scopus 로고
    • Support-vector network
    • C. Cortes, and V. Vapnik Support-vector network Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 0141738785 scopus 로고    scopus 로고
    • Secondary structure prediction with support vector machines
    • J.J. Ward, L.J. McGuffin, B.F. Buxton, and D.T. Jones Secondary structure prediction with support vector machines Bioinformatics 19 13 2003 1650 1655
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1650-1655
    • Ward, J.J.1    McGuffin, L.J.2    Buxton, B.F.3    Jones, D.T.4
  • 11
    • 0344033670 scopus 로고    scopus 로고
    • Efficient remote homology detection using local structure
    • Y. Hou, W. Hsu, M.L. Lee, and C. Bystroff Efficient remote homology detection using local structure Bioinformatics 19 17 2003 2294 2301
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2294-2301
    • Hou, Y.1    Hsu, W.2    Lee, M.L.3    Bystroff, C.4
  • 12
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee Choosing multiple parameters for support vector machines Machine Learning 46 1-3 2002 131 159 (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 13
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • K. Duan, S. Keerthi, and A.N. Poo Evaluation of simple performance measures for tuning SVM hyperparameters Neurocomputing 51 4 2003 41 59
    • (2003) Neurocomputing , vol.51 , Issue.4 , pp. 41-59
    • Duan, K.1    Keerthi, S.2    Poo, A.N.3
  • 14
    • 0034271876 scopus 로고    scopus 로고
    • The evidence framework applied to support vector machines
    • J.T.-Y. Kwok The evidence framework applied to support vector machines IEEE Transactions on Neural Networks 11 5 2000 1162 1173
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.5 , pp. 1162-1173
    • Kwok, J.T.-Y.1
  • 23
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J.C. Platt Fast training of support vector machines using sequential minimal optimization B. Schölkopf, C.J.C. Burges, A.J. Smola, Advances in Kernel Methods: Support Vector Learning 1999 MIT Press Cambridge, MA, USA 185 208
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 24
    • 33144470194 scopus 로고    scopus 로고
    • Efficient hyperkernel learning using second-order cone programming
    • I.W.-H. Tsang, and J.T.-Y. Kwok Efficient hyperkernel learning using second-order cone programming IEEE Transactions on Neural Networks 17 1 2006 48 58
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.1 , pp. 48-58
    • Tsang, I.W.-H.1    Kwok, J.T.-Y.2
  • 29
    • 8444248846 scopus 로고    scopus 로고
    • Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition
    • M. Wang, J. Yang, G.P. Liu, Z.J. Xu, and K.C. Chou Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition Protein Engineering Design and Selection 17 6 2004 509 516
    • (2004) Protein Engineering Design and Selection , vol.17 , Issue.6 , pp. 509-516
    • Wang, M.1    Yang, J.2    Liu, G.P.3    Xu, Z.J.4    Chou, K.C.5
  • 30
    • 33947106261 scopus 로고    scopus 로고
    • A new fuzzy support vector machine based on the weighted margin
    • Q. Tao, and J. Wang A new fuzzy support vector machine based on the weighted margin Neural Processing Letters 20 3 2004 139 150
    • (2004) Neural Processing Letters , vol.20 , Issue.3 , pp. 139-150
    • Tao, Q.1    Wang, J.2
  • 31
    • 28244467848 scopus 로고    scopus 로고
    • Posterior probability support vector machines for unbalanced data
    • DOI 10.1109/TNN.2005.857955
    • Q. Tao, G.-W. Wu, F.-Y. Wang, and J. Wang Posterior probability support vector machines for unbalanced data IEEE Transactions on Neural Networks 16 6 2005 1561 1573 (Pubitemid 41709652)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1561-1573
    • Tao, Q.1    Wu, G.-W.2    Wang, F.-Y.3    Wang, J.4
  • 32
    • 33846063260 scopus 로고    scopus 로고
    • Face recognition using total margin-based adaptive fuzzy support vector machines
    • Y.-H. Liu, and Y.-T. Chen Face recognition using total margin-based adaptive fuzzy support vector machines IEEE Transactions on Neural Networks 18 1 2007 178 192
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.1 , pp. 178-192
    • Liu, Y.-H.1    Chen, Y.-T.2
  • 34
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • L. Vandenberghe, and S. Boyd Semidefinite programming SIAM Review 38 1 1996 49 95
    • (1996) SIAM Review , vol.38 , Issue.1 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2
  • 36
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • J.F. Sturm Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones Optimization Methods and Software 11 1 1999 625 653
    • (1999) Optimization Methods and Software , vol.11 , Issue.1 , pp. 625-653
    • Sturm, J.F.1
  • 38
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • J.C. Platt Probabilistic outputs for support vector machines and comparison to regularized likelihood methods A.J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans, Advances in Large Margin Classifiers 2000 MIT Press Cambridge, MA, USA 61 74
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 39
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • H.-T. Lin, C.-J. Lin, and R.C. Weng A note on Platt's probabilistic outputs for support vector machines Machine Learning 68 3 2007 267 276
    • (2007) Machine Learning , vol.68 , Issue.3 , pp. 267-276
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.