-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Machine Learning, 36 (1,2), 1999, 105-139.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
26944480552
-
A case-based technique for tracking concept drift in spam filtering
-
Cambridge, UK, Springer, LNCS
-
Delaney S.J., Cunningham P., Tsymbal A., Coyle L. A case-based technique for tracking concept drift in spam filtering. In: Proc. 24th SGAI Int. Conf. on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK, Springer, LNCS, 2004, 3-16.
-
(2004)
Proc. 24th SGAI Int. Conf. on Innovative Techniques and Applications of Artificial Intelligence
, pp. 3-16
-
-
Delaney, S.J.1
Cunningham, P.2
Tsymbal, A.3
Coyle, L.4
-
6
-
-
0031178032
-
Surveillance of nosocomial infections: A fundamental ingredient for quality
-
Gaynes R.P. Surveillance of nosocomial infections: a fundamental ingredient for quality. Infect Control Hosp Epidemiol, 18(7), 1997, 475-478.
-
(1997)
Infect Control Hosp Epidemiol
, vol.18
, Issue.7
, pp. 475-478
-
-
Gaynes, R.P.1
-
8
-
-
78149292125
-
Dynamic weighted majority: A new ensemble method for tracking concept drift
-
IEEE CS Press
-
Kolter J.Z., Maloof M.A. Dynamic weighted majority: a new ensemble method for tracking concept drift. In: 3rd IEEE Int. Conf. on Data Mining ICDM'03, IEEE CS Press, 2003, 123-130.
-
(2003)
3rd IEEE Int. Conf. on Data Mining ICDM'03
, pp. 123-130
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
9
-
-
0000245470
-
Selecting a classification method by cross-validation
-
Schaffer C. Selecting a classification method by cross-validation, Machine Learning, 13, 1993, 135-143.
-
(1993)
Machine Learning
, vol.13
, pp. 135-143
-
-
Schaffer, C.1
-
12
-
-
10444277053
-
-
National Institutes of Health, U.S. Department of Health and Human Services, USA
-
The Problem of Antibiotic Resistance, NIAID Fact Sheet. National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, U.S. Department of Health and Human Services, USA, 2004 (available at www.niaid.nih.gov/factsheets/antimicro.htm).
-
(2004)
The Problem of Antibiotic Resistance, NIAID Fact Sheet
-
-
-
14
-
-
33745362098
-
Knowledge discovery from microbiology data: Many-sided analysis of antibiotic resistance in nosocomial infections
-
3rd Int. Conf. on Professional Knowledge Management: Experience and Visions (WM05), Springer
-
Pechenizkiy M., Tsymbal A., Puuronen S., Shifrin M., Alexandrova I. Knowledge discovery from microbiology data: many-sided analysis of antibiotic resistance in nosocomial infections. In: 3rd Int. Conf. on Professional Knowledge Management: Experience and Visions (WM05), Springer, LNAI 3782, 2005, 360-372.
-
(2005)
LNAI
, vol.3782
, pp. 360-372
-
-
Pechenizkiy, M.1
Tsymbal, A.2
Puuronen, S.3
Shifrin, M.4
Alexandrova, I.5
-
15
-
-
84974706809
-
Bagging and boosting with dynamic integration of classifiers
-
D.A. Zighed, J. Komorowski, J. Żytkow (eds.), Principles of Data Mining and Knowledge Discovery, Proceedings of PKDD 2000, Springer
-
Tsymbal A., Puuronen S. Bagging and boosting with dynamic integration of classifiers. In: D.A. Zighed, J. Komorowski, J. Żytkow (eds.), Principles of Data Mining and Knowledge Discovery, Proceedings of PKDD 2000, Springer, LNAI 1910, 2000, 116-125.
-
(2000)
LNAI
, vol.1910
, pp. 116-125
-
-
Tsymbal, A.1
Puuronen, S.2
-
16
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
Wang H., Fan W., Yu P.S., Han J. Mining concept-drifting data streams using ensemble classifiers. In: Proc. 9th Int. Conf. on Knowledge Discovery and Data Mining KDD'03, 2003, 226-235.
-
(2003)
Proc. 9th Int. Conf. on Knowledge Discovery and Data Mining KDD'03
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
17
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer G., Kubat M. Learning in the presence of concept drift and hidden contexts, Machine Learning, 23 (1), 1996, 69-101.
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|