메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 679-684

Handling local concept drift with dynamic integration of classifiers: Domain of antibiotic resistance in nosocomial infections

Author keywords

[No Author keywords available]

Indexed keywords

ANTIBIOTICS; DATA HANDLING; DATABASE SYSTEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS;

EID: 33845587386     PISSN: 10637125     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CBMS.2006.94     Document Type: Conference Paper
Times cited : (45)

References (18)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Machine Learning, 36 (1,2), 1999, 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 6
    • 0031178032 scopus 로고    scopus 로고
    • Surveillance of nosocomial infections: A fundamental ingredient for quality
    • Gaynes R.P. Surveillance of nosocomial infections: a fundamental ingredient for quality. Infect Control Hosp Epidemiol, 18(7), 1997, 475-478.
    • (1997) Infect Control Hosp Epidemiol , vol.18 , Issue.7 , pp. 475-478
    • Gaynes, R.P.1
  • 8
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • IEEE CS Press
    • Kolter J.Z., Maloof M.A. Dynamic weighted majority: a new ensemble method for tracking concept drift. In: 3rd IEEE Int. Conf. on Data Mining ICDM'03, IEEE CS Press, 2003, 123-130.
    • (2003) 3rd IEEE Int. Conf. on Data Mining ICDM'03 , pp. 123-130
    • Kolter, J.Z.1    Maloof, M.A.2
  • 9
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • Schaffer C. Selecting a classification method by cross-validation, Machine Learning, 13, 1993, 135-143.
    • (1993) Machine Learning , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 12
    • 10444277053 scopus 로고    scopus 로고
    • National Institutes of Health, U.S. Department of Health and Human Services, USA
    • The Problem of Antibiotic Resistance, NIAID Fact Sheet. National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, U.S. Department of Health and Human Services, USA, 2004 (available at www.niaid.nih.gov/factsheets/antimicro.htm).
    • (2004) The Problem of Antibiotic Resistance, NIAID Fact Sheet
  • 14
    • 33745362098 scopus 로고    scopus 로고
    • Knowledge discovery from microbiology data: Many-sided analysis of antibiotic resistance in nosocomial infections
    • 3rd Int. Conf. on Professional Knowledge Management: Experience and Visions (WM05), Springer
    • Pechenizkiy M., Tsymbal A., Puuronen S., Shifrin M., Alexandrova I. Knowledge discovery from microbiology data: many-sided analysis of antibiotic resistance in nosocomial infections. In: 3rd Int. Conf. on Professional Knowledge Management: Experience and Visions (WM05), Springer, LNAI 3782, 2005, 360-372.
    • (2005) LNAI , vol.3782 , pp. 360-372
    • Pechenizkiy, M.1    Tsymbal, A.2    Puuronen, S.3    Shifrin, M.4    Alexandrova, I.5
  • 15
    • 84974706809 scopus 로고    scopus 로고
    • Bagging and boosting with dynamic integration of classifiers
    • D.A. Zighed, J. Komorowski, J. Żytkow (eds.), Principles of Data Mining and Knowledge Discovery, Proceedings of PKDD 2000, Springer
    • Tsymbal A., Puuronen S. Bagging and boosting with dynamic integration of classifiers. In: D.A. Zighed, J. Komorowski, J. Żytkow (eds.), Principles of Data Mining and Knowledge Discovery, Proceedings of PKDD 2000, Springer, LNAI 1910, 2000, 116-125.
    • (2000) LNAI , vol.1910 , pp. 116-125
    • Tsymbal, A.1    Puuronen, S.2
  • 17
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G., Kubat M. Learning in the presence of concept drift and hidden contexts, Machine Learning, 23 (1), 1996, 69-101.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.