메뉴 건너뛰기




Volumn 21, Issue 10, 2010, Pages 1543-1554

Probabilistic self-organizing maps for continuous data

Author keywords

Classification; self organization; unsupervised learning; visualization

Indexed keywords

CLASSIFICATION; COMMONLY USED; COMPUTATIONAL INTELLIGENCE; CONTINUOUS DATA; CONTINUOUS PROBABILITY DISTRIBUTION; ESTIMATION THEORY; EXPECTATION MAXIMIZATION; INPUT SPACE; LEARNING SCHEMES; PROBABILISTIC APPROACHES; PROBABILISTIC METHODOLOGY; SELF-ORGANIZATION; SELF-ORGANIZATION MECHANISMS; SELF-ORGANIZING FEATURE MAP; STATE OF THE ART; STOCHASTIC APPROXIMATION METHODS; THEORETICAL FRAMEWORK; TYPICAL APPLICATION;

EID: 77957805746     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2060208     Document Type: Article
Times cited : (25)

References (76)
  • 1
    • 59849123583 scopus 로고    scopus 로고
    • Document analysis and visualization with zero-inflated Poisson
    • Aug
    • D. Alvarez and H. Hidalgo, "Document analysis and visualization with zero-inflated Poisson", Data Mining Knowledge Discovery, vol. 19, no. 1, pp. 1-23, Aug. 2009.
    • (2009) Data Mining Knowledge Discovery , vol.19 , Issue.1 , pp. 1-23
    • Alvarez, D.1    Hidalgo, H.2
  • 2
    • 27844544682 scopus 로고    scopus 로고
    • Generative topographic mapping applied to clustering and visualization of motor unit action potentials
    • A. Andrade, S. Nasuto, P. Kyberd, and C. Sweeney-Reed, "Generative topographic mapping applied to clustering and visualization of motor unit action potentials", BioSystems, vol. 82, no. 3, pp. 273-284, 2005.
    • (2005) BioSystems , vol.82 , Issue.3 , pp. 273-284
    • Andrade, A.1    Nasuto, S.2    Kyberd, P.3    Sweeney-Reed, C.4
  • 3
    • 25844441047 scopus 로고    scopus 로고
    • 2-D feature recognition and 3-D reconstruction in solar EUV images
    • M. Aschwanden, "2-D feature recognition and 3-D reconstruction in solar EUV images", Solar Phys., vol. 228, nos. 1-2, pp. 339-358, 2005.
    • (2005) Solar Phys. , vol.228 , Issue.1-2 , pp. 339-358
    • Aschwanden, M.1
  • 5
    • 34548119512 scopus 로고    scopus 로고
    • Time series prediction with the self-organizing map: A review
    • G. Barreto, "Time series prediction with the self-organizing map: A review", Studies Comput. Intell., vol. 77, pp. 135-158, 2008.
    • (2008) Studies Comput. Intell. , vol.77 , pp. 135-158
    • Barreto, G.1
  • 6
    • 33746761635 scopus 로고    scopus 로고
    • Adaptive filtering with the self-organizing map: A performance comparison
    • G. Barreto and L. Souza, "Adaptive filtering with the self-organizing map: A performance comparison", Neural Netw., vol. 19, nos. 6-7, pp. 785-798, 2006.
    • (2006) Neural. Netw. , vol.19 , Issue.6-7 , pp. 785-798
    • Barreto, G.1    Souza, L.2
  • 7
    • 34447287755 scopus 로고    scopus 로고
    • EUV coronal pattern of complexes of solar activity
    • E. E. Benevolenskaya, "EUV coronal pattern of complexes of solar activity", Advances Space Res., vol. 39, no. 12, pp. 1860-1866, 2007.
    • (2007) Advances Space Res. , vol.39 , Issue.12 , pp. 1860-1866
    • Benevolenskaya, E.E.1
  • 9
    • 0347963789 scopus 로고    scopus 로고
    • The generative topographic mapping
    • C. M. Bishop and M. Svensén, "The generative topographic mapping", Neural Comput., vol. 10, no. 1, pp. 215-234, 1998.
    • (1998) Neural. Comput. , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.M.1    Svensén, M.2
  • 10
    • 0344110441 scopus 로고    scopus 로고
    • Developments of the generative topographic mapping
    • C. Bishop, M. Svensén, and C. Williams, "Developments of the generative topographic mapping", Neurocomputing, vol. 21, nos. 1-3, pp. 203-224, 1998.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 203-224
    • Bishop, C.1    Svensén, M.2    Williams, C.3
  • 11
    • 15944381584 scopus 로고    scopus 로고
    • Gas identification using density models
    • S. Brahim-Belhouari and A. Bermak, "Gas identification using density models", Pattern Recog. Lett., vol. 26, no. 6, pp. 699-706, 2005.
    • (2005) Pattern Recog. Lett. , vol.26 , Issue.6 , pp. 699-706
    • Brahim-Belhouari, S.1    Bermak, A.2
  • 12
    • 0035111359 scopus 로고    scopus 로고
    • A unified model for probabilistic principal surfaces
    • Jan
    • K.-Y. Chang and J. Ghosh, "A unified model for probabilistic principal surfaces", IEEE Trans. Pattern Analysis Mach. Intell., vol. 23, no. 1, pp. 22-41, Jan. 2001.
    • (2001) IEEE Trans. Pattern Analysis Mach. Intell. , vol.23 , Issue.1 , pp. 22-41
    • Chang, K.-Y.1    Ghosh, J.2
  • 13
    • 67349252614 scopus 로고    scopus 로고
    • Model-based clustering by probabilistic self-organizing maps
    • May
    • S.-S. Cheng, H.-C. Fu, and H.-M. Wang, "Model-based clustering by probabilistic self-organizing maps", IEEE Trans. Neural Netw., vol. 20, no. 5, pp. 805-826, May 2009.
    • (2009) IEEE Trans. Neural. Netw. , vol.20 , Issue.5 , pp. 805-826
    • Cheng, S.-S.1    Fu, H.-C.2    Wang, H.-M.3
  • 14
    • 2542578771 scopus 로고    scopus 로고
    • An online cellular probabilistic self-organizing map for static and dynamic data sets
    • Apr
    • T. Chow and S. Wu, "An online cellular probabilistic self-organizing map for static and dynamic data sets", IEEE Trans. Circuits Syst. I: Regular Papers, vol. 51, no. 4, pp. 732-747, Apr. 2004.
    • (2004) IEEE Trans. Circuits Syst. I: Regular Papers , vol.51 , Issue.4 , pp. 732-747
    • Chow, T.1    Wu, S.2
  • 15
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • B. Delyon, M. Lavielle, and E. Moulines, "Convergence of a stochastic approximation version of the EM algorithm", Ann. Statist., vol. 27, no. 1, pp. 94-128, 1999.
    • (1999) Ann. Statist. , vol.27 , Issue.1 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 16
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Lair, and D. Rubin, "Maximum likelihood from incomplete data via the EM algorithm", J. Royal Statist. Soc. B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Royal Statist. Soc. B. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Lair, N.2    Rubin, D.3
  • 17
    • 34250893790 scopus 로고    scopus 로고
    • Incremental mllr speaker adaptation by fuzzy logic control
    • I.-J. Ding, "Incremental mllr speaker adaptation by fuzzy logic control", Pattern Recog., vol. 40, no. 11, pp. 3110-3119, 2007.
    • (2007) Pattern Recog. , vol.40 , Issue.11 , pp. 3110-3119
    • Ding, I.-J.1
  • 18
    • 38749112231 scopus 로고    scopus 로고
    • Aptacdss-e: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction
    • J.-H. Eom, S.-C. Kim, and B.-T. Zhang, "Aptacdss-e: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction", Expert Syst. Applicat., vol. 34, no. 4, pp. 2465-2479, 2008.
    • (2008) Expert Syst. Applicat. , vol.34 , Issue.4 , pp. 2465-2479
    • Eom, J.-H.1    Kim, S.-C.2    Zhang, B.-T.3
  • 19
    • 25844486055 scopus 로고    scopus 로고
    • Rotational tomography for 3-D reconstruction of the white-light and EUV corona in the post-SOHO era
    • R. Frazin and F. Kamalabadi, "Rotational tomography for 3-D reconstruction of the white-light and EUV corona in the post-SOHO era", Solar Phys., vol. 228, nos. 1-2, pp. 219-237, 2005.
    • (2005) Solar Phys. , vol.228 , Issue.1-2 , pp. 219-237
    • Frazin, R.1    Kamalabadi, F.2
  • 20
    • 26844484637 scopus 로고    scopus 로고
    • Web content management by selforganization
    • Sep
    • R. Freeman and H. Yin, "Web content management by selforganization", IEEE Trans. Neural Netw., vol. 16, no. 5, pp. 1256-1268, Sep. 2005.
    • (2005) IEEE Trans. Neural. Netw. , vol.16 , Issue.5 , pp. 1256-1268
    • Freeman, R.1    Yin, H.2
  • 21
    • 44849112157 scopus 로고    scopus 로고
    • Topographic maps for clustering and data visualization
    • C. Fyfe, "Topographic maps for clustering and data visualization", Studies Comput. Intell., vol. 115, pp. 111-153, 2008.
    • (2008) Studies Comput. Intell. , vol.115 , pp. 111-153
    • Fyfe, C.1
  • 22
    • 58449106238 scopus 로고    scopus 로고
    • Topological mappings of video and audio data
    • C. Fyfe, W. Barbakh, W. Ooi, and H. Ko, "Topological mappings of video and audio data", Int. J. Neural Syst., vol. 18, no. 6, pp. 481-489, 2008.
    • (2008) Int. J. Neural. Syst. , vol.18 , Issue.6 , pp. 481-489
    • Fyfe, C.1    Barbakh, W.2    Ooi, W.3    Ko, H.4
  • 24
    • 49649100847 scopus 로고    scopus 로고
    • Visualization of tree-structured data through generative topographic mapping
    • Aug
    • N. Gianniotis and P. Tino, "Visualization of tree-structured data through generative topographic mapping", IEEE Trans. Neural Netw., vol. 19, no. 8, pp. 1468-1493, Aug. 2008.
    • (2008) IEEE Trans. Neural. Netw. , vol.19 , Issue.8 , pp. 1468-1493
    • Gianniotis, N.1    Tino, P.2
  • 25
    • 0039552112 scopus 로고    scopus 로고
    • Kalman filter implementation of self-organizing feature maps
    • K. Haese, "Kalman filter implementation of self-organizing feature maps", Neural Comput., vol. 11, no. 5, pp. 1211-1233, 1999.
    • (1999) Neural. Comput. , vol.11 , Issue.5 , pp. 1211-1233
    • Haese, K.1
  • 26
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • Nov
    • T. Heskes, "Self-organizing maps, vector quantization, and mixture modeling", IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1299-1305, Nov. 2001.
    • (2001) IEEE Trans. Neural. Netw. , vol.12 , Issue.6 , pp. 1299-1305
    • Heskes, T.1
  • 27
    • 33644899363 scopus 로고    scopus 로고
    • Generalizing self-organizing map for categorical data
    • Mar
    • C.-C. Hsu, "Generalizing self-organizing map for categorical data", IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 294-304, Mar. 2006.
    • (2006) IEEE Trans. Neural. Netw. , vol.17 , Issue.2 , pp. 294-304
    • Hsu, C.-C.1
  • 28
    • 0041508620 scopus 로고    scopus 로고
    • A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes
    • Sep
    • P. Kaewtrakulpong and R. Bowden, "A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes", Image Vision Comput., vol. 21, no. 9, pp. 913-929, Sep. 2003.
    • (2003) Image Vision Comput. , vol.21 , Issue.9 , pp. 913-929
    • Kaewtrakulpong, P.1    Bowden, R.2
  • 29
    • 0025489075 scopus 로고
    • The self-organizing map
    • Sep
    • T. Kohonen, "The self-organizing map", Proc. IEEE, vol. 78, no. 9, pp. 1464-1480, Sep. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 30
    • 0003410791 scopus 로고    scopus 로고
    • 3rd ed. Secaucus, NJ: Springer-Verlag
    • T. Kohonen, Self-Organizing Maps, 3rd ed. Secaucus, NJ: Springer-Verlag, 2001.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 32
    • 0038026196 scopus 로고    scopus 로고
    • Stochastic approximation
    • T. Lai, "Stochastic approximation", Ann. Stat., vol. 31, no. 2, pp. 391-406, 2003.
    • (2003) Ann. Stat. , vol.31 , Issue.2 , pp. 391-406
    • Lai, T.1
  • 33
    • 64349099111 scopus 로고    scopus 로고
    • A probabilistic selforganizing map for binary data topographic clustering
    • M. Lebbah, Y. Bennani, and N. Rogovschi, "A probabilistic selforganizing map for binary data topographic clustering", Int. J. Comput. Intell. Applicat., vol. 7, no. 4, pp. 363-383, 2008.
    • (2008) Int. J. Comput. Intell. Applicat. , vol.7 , Issue.4 , pp. 363-383
    • Lebbah, M.1    Bennani, Y.2    Rogovschi, N.3
  • 34
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition", Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 35
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex backgrounds for foreground object detection
    • Nov
    • L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian, "Statistical modeling of complex backgrounds for foreground object detection", IEEE Trans. Image Process., vol. 13, no. 11, pp. 1459-1472, Nov. 2004.
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.Y.-H.3    Tian, Q.4
  • 37
    • 71749121222 scopus 로고    scopus 로고
    • Multivariate student-t self-organizing maps
    • E. López-Rubio, "Multivariate Student-t self-organizing maps", Neural Netw., vol. 22, no. 10, pp. 1432-1447, 2009.
    • (2009) Neural. Netw. , vol.22 , Issue.10 , pp. 1432-1447
    • López-Rubio, E.1
  • 40
    • 70349599588 scopus 로고    scopus 로고
    • Automatic model selection by cross-validation for probabilistic PCA
    • E. López-Rubio and J. Ortiz-De-Lazcano-Lobato, "Automatic model selection by cross-validation for probabilistic PCA", Neural Process. Lett., vol. 30, no. 2, pp. 113-132, 2009.
    • (2009) Neural. Process. Lett. , vol.30 , Issue.2 , pp. 113-132
    • López-Rubio, E.1    Ortiz-De-Lazcano-Lobato, J.2
  • 41
    • 58149466624 scopus 로고    scopus 로고
    • A visual data-mining methodology for seismic-facies analysis, part 1: Testing and comparison with other unsupervised clustering methods
    • I. Marroquín, J.-J. Brault, and B. Hart, "A visual data-mining methodology for seismic-facies analysis, part 1: Testing and comparison with other unsupervised clustering methods", Geophysics, vol. 74, no. 1, pp. P1-P11, 2009.
    • (2009) Geophysics , vol.74 , Issue.1
    • Marroquín, I.1    Brault, J.-J.2    Hart, B.3
  • 42
    • 35648931886 scopus 로고    scopus 로고
    • Assessment of selforganizing map variants for clustering with application to redistribution of emotional speech patterns
    • V. Moschou, D. Ververidis, and C. Kotropoulos, "Assessment of selforganizing map variants for clustering with application to redistribution of emotional speech patterns", Neurocomputing, vol. 71, nos. 1-3, pp. 147-156, 2007.
    • (2007) Neurocomputing , vol.71 , Issue.1-3 , pp. 147-156
    • Moschou, V.1    Ververidis, D.2    Kotropoulos, C.3
  • 43
    • 77957772905 scopus 로고    scopus 로고
    • NASA, Mar., Online. Available
    • NASA. (2010, Mar.). Solar and Heliospheric Observatory Data [Online]. Available: http://sohowww.nascom.nasa.gov/home.html
    • (2010) Solar and Heliospheric Observatory Data
  • 45
    • 0037174193 scopus 로고    scopus 로고
    • Unsupervised learning in neural computation
    • E. Oja, "Unsupervised learning in neural computation", Theor. Comput. Sci., vol. 287, no. 1, pp. 187-207, 2002.
    • (2002) Theor. Comput. Sci. , vol.287 , Issue.1 , pp. 187-207
    • Oja, E.1
  • 46
    • 51049101496 scopus 로고    scopus 로고
    • Advances in clustering and visualization of time series using GTM through time
    • I. Olier and A. Vellido, "Advances in clustering and visualization of time series using GTM through time", Neural Netw., vol. 21, no. 7, pp. 904-913, 2008.
    • (2008) Neural. Netw. , vol.21 , Issue.7 , pp. 904-913
    • Olier, I.1    Vellido, A.2
  • 47
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modeling using the t distribution
    • D. Peel and G. McLachlan, "Robust mixture modeling using the t distribution", Statist. Comput., vol. 10, no. 4, pp. 339-348, 2000.
    • (2000) Statist. Comput. , vol.10 , Issue.4 , pp. 339-348
    • Peel, D.1    McLachlan, G.2
  • 48
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data
    • DOI 10.1109/TNN.2002.804221
    • A. Rauber, D. Merkl, and M. Dittenbach, "The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data", IEEE Trans. Neural Netw., vol. 13, no. 6, pp. 1331-1341, Nov. 2002. (Pubitemid 35428523)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.6 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 49
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro, "A stochastic approximation method", Ann. Math. Statist., vol. 22, no. 3, pp. 400-407, 1951.
    • (1951) Ann. Math. Statist. , vol.22 , Issue.3 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 50
    • 70549114485 scopus 로고    scopus 로고
    • Acceleration of the EM algorithm via extrapolation methods: Review, comparison and new methods
    • F. Saǎdaoui, "Acceleration of the EM algorithm via extrapolation methods: Review, comparison and new methods", Comput. Statist. Data Anal., vol. 54, no. 3, pp. 750-766, 2010.
    • (2010) Comput. Statist. Data Anal. , vol.54 , Issue.3 , pp. 750-766
    • Saǎdaoui, F.1
  • 51
    • 0034131785 scopus 로고    scopus 로고
    • On-line EM algorithm for the normalized Gaussian network
    • M. Sato and S. Ishii, "On-line EM algorithm for the normalized Gaussian network", Neural Comput., vol. 12, no. 2, pp. 407-432, 2000.
    • (2000) Neural. Comput. , vol.12 , Issue.2 , pp. 407-432
    • Sato, M.1    Ishii, S.2
  • 52
    • 84903804601 scopus 로고    scopus 로고
    • 2nd ed. Amsterdam, The Netherlands: Elsevier
    • S. K. Shevell, The Science of Color, 2nd ed. Amsterdam, The Netherlands: Elsevier, 2003.
    • (2003) The Science of Color
    • Shevell, S.K.1
  • 53
    • 0036568162 scopus 로고    scopus 로고
    • Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions
    • S. Shoham, "Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions", Pattern Recog., vol. 35, no. 5, pp. 1127-1142, 2002.
    • (2002) Pattern Recog. , vol.35 , Issue.5 , pp. 1127-1142
    • Shoham, S.1
  • 54
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-time tracking
    • Aug
    • C. Stauffer and W. Grimson, "Learning patterns of activity using real-time tracking", IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 747-757, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 747-757
    • Stauffer, C.1    Grimson, W.2
  • 55
    • 23044454334 scopus 로고    scopus 로고
    • Recognizing partially occluded, expression variant faces from single training image per person with som and soft k-nn ensemble
    • X. Tan, S. Chen, Z.-H. Zhou, and F. Zhang, "Recognizing partially occluded, expression variant faces from single training image per person with som and soft k-nn ensemble", IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 875-886, 2005.
    • (2005) IEEE Trans. Neural. Netw. , vol.16 , Issue.4 , pp. 875-886
    • Tan, X.1    Chen, S.2    Zhou, Z.-H.3    Zhang, F.4
  • 56
    • 39749142807 scopus 로고    scopus 로고
    • An artificial neural network classifier design based-on variable kernel and non-parametric density estimation
    • Apr
    • C. Teh and C. Lim, "An artificial neural network classifier design based-on variable kernel and non-parametric density estimation", Neural Process. Lett., vol. 27, no. 2, pp. 137-151, Apr. 2008.
    • (2008) Neural. Process. Lett. , vol.27 , Issue.2 , pp. 137-151
    • Teh, C.1    Lim, C.2
  • 57
    • 44349158963 scopus 로고    scopus 로고
    • EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions
    • G.-L. Tian, K. Ng, and M. Tan, "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions", Comput. Statist. Data Anal., vol. 52, no. 10, pp. 4768-4778, 2008.
    • (2008) Comput. Statist. Data Anal. , vol.52 , Issue.10 , pp. 4768-4778
    • Tian, G.-L.1    Ng, K.2    Tan, M.3
  • 58
    • 0036565797 scopus 로고    scopus 로고
    • Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way
    • May
    • P. Tino and I. Nabney, "Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way", IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 639-656, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 639-656
    • Tino, P.1    Nabney, I.2
  • 59
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M. Tipping and C. Bishop, "Mixtures of probabilistic principal component analyzers", Neural Comput., vol. 11, no. 2, pp. 443-482, 1999.
    • (1999) Neural. Comput. , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 60
    • 0036633931 scopus 로고    scopus 로고
    • Kernel-based topographic map formation by local density modeling
    • M. M. Van Hulle, "Kernel-based topographic map formation by local density modeling", Neural Comput., vol. 14, no. 7, pp. 1561-1573, 2002.
    • (2002) Neural. Comput. , vol.14 , Issue.7 , pp. 1561-1573
    • Van Hulle, M.M.1
  • 61
    • 0036673228 scopus 로고    scopus 로고
    • Joint entropy maximization in kernel-based topographic maps
    • M. Van Hulle, "Joint entropy maximization in kernel-based topographic maps", Neural Comput., vol. 14, no. 8, pp. 1887-1906, 2002.
    • (2002) Neural. Comput. , vol.14 , Issue.8 , pp. 1887-1906
    • Van Hulle, M.1
  • 62
    • 3843136241 scopus 로고    scopus 로고
    • Entropy-based kernel mixture modeling for topographic map formation
    • Jul
    • M. Van Hulle, "Entropy-based kernel mixture modeling for topographic map formation", IEEE Trans. Neural Netw., vol. 15, no. 4, pp. 850-858, Jul. 2004.
    • (2004) IEEE Trans. Neural. Netw. , vol.15 , Issue.4 , pp. 850-858
    • Van Hulle, M.1
  • 63
    • 13844299474 scopus 로고    scopus 로고
    • Maximum likelihood topographic map formation
    • M. Van Hulle, "Maximum likelihood topographic map formation", Neural Comput., vol. 17, no. 3, pp. 503-513, 2005.
    • (2005) Neural. Comput. , vol.17 , Issue.3 , pp. 503-513
    • Van Hulle, M.1
  • 64
    • 33751248753 scopus 로고    scopus 로고
    • Missing data imputation through GTM as a mixture of t-distributions
    • A. Vellido, "Missing data imputation through GTM as a mixture of t-distributions", Neural Netw., vol. 19, no. 10, pp. 1624-1635, 2006.
    • (2006) Neural. Netw. , vol.19 , Issue.10 , pp. 1624-1635
    • Vellido, A.1
  • 65
    • 33748149588 scopus 로고    scopus 로고
    • Learning nonlinear image manifolds by global alignment of local linear models
    • Aug
    • J. Verbeek, "Learning nonlinear image manifolds by global alignment of local linear models", IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1236-1250, Aug. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.8 , pp. 1236-1250
    • Verbeek, J.1
  • 66
    • 12144267390 scopus 로고    scopus 로고
    • Self-organizing mixture models
    • Jan
    • J. Verbeek, N. Vlassis, and B. Kröse, "Self-organizing mixture models", Neurocomputing, vol. 63, pp. 99-123, Jan. 2005.
    • (2005) Neurocomputing , vol.63 , pp. 99-123
    • Verbeek, J.1    Vlassis, N.2    Kröse, B.3
  • 67
    • 70450240936 scopus 로고    scopus 로고
    • On EM estimation for mixture of multivariate t-distributions
    • H. Wang and Z. Hu, "On EM estimation for mixture of multivariate t-distributions", Neural Process. Lett., vol. 30, no. 3, pp. 243-256, 2009.
    • (2009) Neural. Process. Lett. , vol.30 , Issue.3 , pp. 243-256
    • Wang, H.1    Hu, Z.2
  • 68
    • 28244469523 scopus 로고    scopus 로고
    • PRSOM: A new visualization method by hybridizing multidimensional scaling and self-organizing map
    • Nov
    • S. Wu and T. Chow, "PRSOM: A new visualization method by hybridizing multidimensional scaling and self-organizing map", IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1362-1380, Nov. 2005.
    • (2005) IEEE Trans. Neural. Netw. , vol.16 , Issue.6 , pp. 1362-1380
    • Wu, S.1    Chow, T.2
  • 69
    • 33745192649 scopus 로고    scopus 로고
    • Improvement of borrowing channel assignment for patterned traffic load by online cellular probabilistic self-organizing map
    • DOI 10.1007/s00521-006-0032-3
    • S. Wu, T. Chow, K. Ng, and K. Tsang, "Improvement of borrowing channel assignment for patterned traffic load by online cellular probabilistic self-organizing map", Neural Comput. Applicat., vol. 15, nos. 3-4, pp. 298-309, 2006. (Pubitemid 43909931)
    • (2006) Neural Computing and Applications , vol.15 , Issue.3-4 , pp. 298-309
    • Wu, S.1    Chow, T.W.S.2    Ng, K.T.3    Tsang, K.F.4
  • 70
    • 32144432097 scopus 로고    scopus 로고
    • A classification approach for power distribution systems fault cause identification
    • Feb
    • L. Xu and M.-Y. Chow, "A classification approach for power distribution systems fault cause identification", IEEE Trans. Power Syst., vol. 21, no. 1, pp. 53-60, Feb. 2006.
    • (2006) IEEE Trans. Power Syst. , vol.21 , Issue.1 , pp. 53-60
    • Xu, L.1    Chow, M.-Y.2
  • 71
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • May
    • R. Xu and D. Wunsch II, "Survey of clustering algorithms", IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 645-678, May 2005.
    • (2005) IEEE Trans. Neural. Netw. , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.I.I.2
  • 72
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density networks
    • Jul
    • H. Yin, "On the equivalence between kernel self-organising maps and self-organising mixture density networks", Neural Netw., vol. 19, nos. 6-7, pp. 780-784, Jul. 2006.
    • (2006) Neural. Netw. , vol.19 , Issue.6-7 , pp. 780-784
    • Yin, H.1
  • 73
    • 44849094485 scopus 로고    scopus 로고
    • The self-organizing maps: Background, theories, extensions and applications
    • H. Yin, "The self-organizing maps: Background, theories, extensions and applications", Studies Comput. Intell., vol. 115, pp. 715-762, 2008.
    • (2008) Studies Comput. Intell. , vol.115 , pp. 715-762
    • Yin, H.1
  • 74
    • 0035272084 scopus 로고    scopus 로고
    • Self-organizing mixture networks for probability density estimation
    • Mar
    • H. Yin and N. Allinson, "Self-organizing mixture networks for probability density estimation", IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 405-411, Mar. 2001.
    • (2001) IEEE Trans. Neural. Netw. , vol.12 , Issue.2 , pp. 405-411
    • Yin, H.1    Allinson, N.2
  • 75
    • 33748413305 scopus 로고    scopus 로고
    • Probabilistic PCA for t distributions
    • J. Zhao and Q. Jiang, "Probabilistic PCA for t distributions", Neurocomputing, vol. 69, nos. 16-18, pp. 2217-2226, 2006.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2217-2226
    • Zhao, J.1    Jiang, Q.2
  • 76
    • 33644870377 scopus 로고    scopus 로고
    • Efficient adaptive density estimation per image pixel for the task of background subtraction
    • May
    • Z. Zivkovic and F. van der Heijden, "Efficient adaptive density estimation per image pixel for the task of background subtraction", Pattern Recog. Lett., vol. 27, no. 7, pp. 773-780, May 2006.
    • (2006) Pattern Recog. Lett. , vol.27 , Issue.7 , pp. 773-780
    • Zivkovic, Z.1    Van Der Heijden, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.