-
1
-
-
84965063004
-
An inequality with applications to statistical estimation for probabilistic functions for a Markov process and to a model for ecology
-
Baum L.E., and Egon J.A. An inequality with applications to statistical estimation for probabilistic functions for a Markov process and to a model for ecology. Bulletin of the American Mathematical Society 73 (1967) 360-363
-
(1967)
Bulletin of the American Mathematical Society
, vol.73
, pp. 360-363
-
-
Baum, L.E.1
Egon, J.A.2
-
3
-
-
0030681437
-
-
Bishop, C., Hinton, G., & Strachan, I. 1997 GTM through time. In: Proceedings of the IEE fifth international conference on artificial neural networks (pp. 111-116)
-
Bishop, C., Hinton, G., & Strachan, I. 1997 GTM through time. In: Proceedings of the IEE fifth international conference on artificial neural networks (pp. 111-116)
-
-
-
-
5
-
-
0344110441
-
Developments of the generative topographic mapping
-
Bishop C., Svensén M., and Williams C. Developments of the generative topographic mapping. Neurocomputing 21 1 (1998) 203-224
-
(1998)
Neurocomputing
, vol.21
, Issue.1
, pp. 203-224
-
-
Bishop, C.1
Svensén, M.2
Williams, C.3
-
6
-
-
0037381861
-
Outlier detection in scatterometer data: Neural network approaches
-
Bullen R.J., Cornford D., and Nabney I.T. Outlier detection in scatterometer data: Neural network approaches. Neural Networks 16 3-4 (2003) 419-426
-
(2003)
Neural Networks
, vol.16
, Issue.3-4
, pp. 419-426
-
-
Bullen, R.J.1
Cornford, D.2
Nabney, I.T.3
-
7
-
-
11844268453
-
Reconstruction of sequential data with probabilistic models and continuity constraints
-
Solla S., Leen T., and Muller K.R. (Eds). NIPS'1999
-
Carreira-Perpiñan M.A. Reconstruction of sequential data with probabilistic models and continuity constraints. In: Solla S., Leen T., and Muller K.R. (Eds). Advances in neural information processing systems 12. NIPS'1999 (2000) 414-420
-
(2000)
Advances in neural information processing systems 12
, pp. 414-420
-
-
Carreira-Perpiñan, M.A.1
-
10
-
-
0242577959
-
Learning and inference in the brain
-
Friston K. Learning and inference in the brain. Neural Networks 16 (2003) 1325-1352
-
(2003)
Neural Networks
, vol.16
, pp. 1325-1352
-
-
Friston, K.1
-
11
-
-
0036825785
-
Latent variable models for the topographic organisation of discrete and strictly positive data
-
Girolami M. Latent variable models for the topographic organisation of discrete and strictly positive data. Neurocomputing 48 (2002) 185-198
-
(2002)
Neurocomputing
, vol.48
, pp. 185-198
-
-
Girolami, M.1
-
13
-
-
0036498243
-
A dynamic probabilistic model to visualise topic evolution in text streams
-
Kabán A., and Girolami M. A dynamic probabilistic model to visualise topic evolution in text streams. Journal of Intelligence Information Systems 18 2-3 (2002) 107-125
-
(2002)
Journal of Intelligence Information Systems
, vol.18
, Issue.2-3
, pp. 107-125
-
-
Kabán, A.1
Girolami, M.2
-
14
-
-
21844471761
-
Clustering of time series subsequences is meaningless: Implications for previous and future research
-
Keogh E., and Lin J. Clustering of time series subsequences is meaningless: Implications for previous and future research. Knowledge and Information Systems 8 2 (2005) 154-177
-
(2005)
Knowledge and Information Systems
, vol.8
, Issue.2
, pp. 154-177
-
-
Keogh, E.1
Lin, J.2
-
16
-
-
0036825530
-
On the generative probability density model in the self-organizing map
-
Kostiainen T., and Lampinen J. On the generative probability density model in the self-organizing map. Neurocomputing 48 1-4 (2002) 217-228
-
(2002)
Neurocomputing
, vol.48
, Issue.1-4
, pp. 217-228
-
-
Kostiainen, T.1
Lampinen, J.2
-
18
-
-
35048834810
-
Iterative incremental clustering of time series
-
Advances in database technology-EDBT 2004 proceedings. Bertino E., et al. (Ed)
-
Lin J., Vlachos M., Keogh E., and Gunopulos D. Iterative incremental clustering of time series. In: Bertino E., et al. (Ed). Advances in database technology-EDBT 2004 proceedings. LNCS Vol. 2992 (2004) 106-122
-
(2004)
LNCS
, vol.2992
, pp. 106-122
-
-
Lin, J.1
Vlachos, M.2
Keogh, E.3
Gunopulos, D.4
-
19
-
-
25144482321
-
Comparative assessment of the robustness of missing data imputation through Generative Topographic Mapping
-
Computational intelligence and bioinspired systems, IWANN 2005 proceedings. Cabestany J., Prieto A., and Sandoval F. (Eds)
-
Olier I., and Vellido A. Comparative assessment of the robustness of missing data imputation through Generative Topographic Mapping. In: Cabestany J., Prieto A., and Sandoval F. (Eds). Computational intelligence and bioinspired systems, IWANN 2005 proceedings. LNCS Vol. 3512 (2005) 787-794
-
(2005)
LNCS
, vol.3512
, pp. 787-794
-
-
Olier, I.1
Vellido, A.2
-
20
-
-
26444613281
-
Change detection in time series using wavelet footprints
-
Advances in spatial and temporal databases, SSTD 2005 proceedings. Medeiros C.B., Egenhofer M., and Bertino E. (Eds)
-
Sharifzadeh M., Azmoodeh F., and Shahabi C. Change detection in time series using wavelet footprints. In: Medeiros C.B., Egenhofer M., and Bertino E. (Eds). Advances in spatial and temporal databases, SSTD 2005 proceedings. LNCS Vol. 3633 (2005) 127-144
-
(2005)
LNCS
, vol.3633
, pp. 127-144
-
-
Sharifzadeh, M.1
Azmoodeh, F.2
Shahabi, C.3
-
21
-
-
33746632543
-
Unfolding preprocessing for meaningful time series clustering
-
Simon G., Lee J.A., and Verleysen M. Unfolding preprocessing for meaningful time series clustering. Neural Networks 19 6-7 (2006) 877-888
-
(2006)
Neural Networks
, vol.19
, Issue.6-7
, pp. 877-888
-
-
Simon, G.1
Lee, J.A.2
Verleysen, M.3
-
22
-
-
15844418774
-
Merge SOM for temporal data
-
Strickert M., and Hammer B. Merge SOM for temporal data. Neurocomputing 64 (2005) 39-71
-
(2005)
Neurocomputing
, vol.64
, pp. 39-71
-
-
Strickert, M.1
Hammer, B.2
-
23
-
-
51049090243
-
-
Tikka, J., & Hollmén, J. 2004. Learning linear dependency trees from multivariate time-series data. In: Proceedings of the IEEE international conference on data mining (ICDM 2004) workshop on temporal data mining: Algorithms, theory and applications
-
Tikka, J., & Hollmén, J. 2004. Learning linear dependency trees from multivariate time-series data. In: Proceedings of the IEEE international conference on data mining (ICDM 2004) workshop on temporal data mining: Algorithms, theory and applications
-
-
-
-
24
-
-
0036565797
-
Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way
-
Tino P., and Nabney I. Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 5 (2002) 639-656
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.5
, pp. 639-656
-
-
Tino, P.1
Nabney, I.2
-
25
-
-
33749430260
-
Dynamics and topographic organization of recursive self-organizing maps
-
Tino P., Farkaš I., and van Mourik J. Dynamics and topographic organization of recursive self-organizing maps. Neural Computation 18 (2006) 2529-2567
-
(2006)
Neural Computation
, vol.18
, pp. 2529-2567
-
-
Tino, P.1
Farkaš, I.2
van Mourik, J.3
-
26
-
-
51049103054
-
-
Vellido, A. (2005). Preliminary theoretical results on a feature relevance determination method for Generative Topographic Mapping. Technical report LSI-05-13-R. Universitat Politècnica de Catalunya (UPC)
-
Vellido, A. (2005). Preliminary theoretical results on a feature relevance determination method for Generative Topographic Mapping. Technical report LSI-05-13-R. Universitat Politècnica de Catalunya (UPC)
-
-
-
-
27
-
-
33751248753
-
Missing data imputation through GTM as a mixture of t-distributions
-
Vellido A. Missing data imputation through GTM as a mixture of t-distributions. Neural Networks 19 10 (2006) 1624-1635
-
(2006)
Neural Networks
, vol.19
, Issue.10
, pp. 1624-1635
-
-
Vellido, A.1
-
29
-
-
32544451613
-
Robust analysis of MRS brain tumour data using t-GTM
-
Vellido A., Lisboa P.J.G., and Vicente D. Robust analysis of MRS brain tumour data using t-GTM. Neurocomputing 69 7-9 (2006) 754-768
-
(2006)
Neurocomputing
, vol.69
, Issue.7-9
, pp. 754-768
-
-
Vellido, A.1
Lisboa, P.J.G.2
Vicente, D.3
-
30
-
-
38049168357
-
SOM-based data visualization methods
-
Vesanto J. SOM-based data visualization methods. Intelligent Data Analysis 3 2 (1999) 111-126
-
(1999)
Intelligent Data Analysis
, vol.3
, Issue.2
, pp. 111-126
-
-
Vesanto, J.1
-
31
-
-
26844476580
-
An automated report generation tool for the data understanding phase
-
Abraham A., and Koeppen M. (Eds)
-
Vesanto J., and Hollmén J. An automated report generation tool for the data understanding phase. In: Abraham A., and Koeppen M. (Eds). Hybrid information systems. Proceedings of HIS'01 (2001) 611-625
-
(2001)
Hybrid information systems. Proceedings of HIS'01
, pp. 611-625
-
-
Vesanto, J.1
Hollmén, J.2
-
32
-
-
0036790884
-
Recursive self-organizing maps
-
Voegtlin T. Recursive self-organizing maps. Neural Networks 15 8-9 (2002) 979-991
-
(2002)
Neural Networks
, vol.15
, Issue.8-9
, pp. 979-991
-
-
Voegtlin, T.1
-
34
-
-
0242540409
-
-
Yamanishi, K., & Takeuchi, J.-I. 2002. A unifying framework for detecting outliers and change points from non-stationary time series data. In: Proceedings of the 8th ACM SIGKDD intenational conference on knowledge discovery and data mining (pp. 676-681)
-
Yamanishi, K., & Takeuchi, J.-I. 2002. A unifying framework for detecting outliers and change points from non-stationary time series data. In: Proceedings of the 8th ACM SIGKDD intenational conference on knowledge discovery and data mining (pp. 676-681)
-
-
-
-
35
-
-
0035272084
-
Self-organizing mixture networks for probability density estimation
-
Yin H., and Allinson N. Self-organizing mixture networks for probability density estimation. IEEE Transaction on Neural Networks 12 (2001) 405-411
-
(2001)
IEEE Transaction on Neural Networks
, vol.12
, pp. 405-411
-
-
Yin, H.1
Allinson, N.2
-
37
-
-
0003123930
-
Forecasting with artificial neural networks: The state of the art
-
Zhang G., Patuwo B., and Hu M. Forecasting with artificial neural networks: The state of the art. International Journal on Forecasting 14 1 (1998) 35-62
-
(1998)
International Journal on Forecasting
, vol.14
, Issue.1
, pp. 35-62
-
-
Zhang, G.1
Patuwo, B.2
Hu, M.3
|