메뉴 건너뛰기




Volumn 21, Issue 7, 2008, Pages 904-913

Advances in clustering and visualization of time series using GTM through time

Author keywords

Change point detection; Clustering; Generative topographic mapping; Multivariate time series; Unsupervised relevance determination; Visualization

Indexed keywords

CLUSTERING ALGORITHMS; CONFORMAL MAPPING; RISK ASSESSMENT; VISUALIZATION;

EID: 51049101496     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2008.05.013     Document Type: Article
Times cited : (31)

References (37)
  • 1
    • 84965063004 scopus 로고
    • An inequality with applications to statistical estimation for probabilistic functions for a Markov process and to a model for ecology
    • Baum L.E., and Egon J.A. An inequality with applications to statistical estimation for probabilistic functions for a Markov process and to a model for ecology. Bulletin of the American Mathematical Society 73 (1967) 360-363
    • (1967) Bulletin of the American Mathematical Society , vol.73 , pp. 360-363
    • Baum, L.E.1    Egon, J.A.2
  • 3
    • 0030681437 scopus 로고    scopus 로고
    • Bishop, C., Hinton, G., & Strachan, I. 1997 GTM through time. In: Proceedings of the IEE fifth international conference on artificial neural networks (pp. 111-116)
    • Bishop, C., Hinton, G., & Strachan, I. 1997 GTM through time. In: Proceedings of the IEE fifth international conference on artificial neural networks (pp. 111-116)
  • 4
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The generative topographic mapping
    • Bishop C., Svensén M., and Williams C. GTM: The generative topographic mapping. Neural Computation 10 1 (1998) 215-234
    • (1998) Neural Computation , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.1    Svensén, M.2    Williams, C.3
  • 5
    • 0344110441 scopus 로고    scopus 로고
    • Developments of the generative topographic mapping
    • Bishop C., Svensén M., and Williams C. Developments of the generative topographic mapping. Neurocomputing 21 1 (1998) 203-224
    • (1998) Neurocomputing , vol.21 , Issue.1 , pp. 203-224
    • Bishop, C.1    Svensén, M.2    Williams, C.3
  • 6
    • 0037381861 scopus 로고    scopus 로고
    • Outlier detection in scatterometer data: Neural network approaches
    • Bullen R.J., Cornford D., and Nabney I.T. Outlier detection in scatterometer data: Neural network approaches. Neural Networks 16 3-4 (2003) 419-426
    • (2003) Neural Networks , vol.16 , Issue.3-4 , pp. 419-426
    • Bullen, R.J.1    Cornford, D.2    Nabney, I.T.3
  • 7
    • 11844268453 scopus 로고    scopus 로고
    • Reconstruction of sequential data with probabilistic models and continuity constraints
    • Solla S., Leen T., and Muller K.R. (Eds). NIPS'1999
    • Carreira-Perpiñan M.A. Reconstruction of sequential data with probabilistic models and continuity constraints. In: Solla S., Leen T., and Muller K.R. (Eds). Advances in neural information processing systems 12. NIPS'1999 (2000) 414-420
    • (2000) Advances in neural information processing systems 12 , pp. 414-420
    • Carreira-Perpiñan, M.A.1
  • 8
  • 10
    • 0242577959 scopus 로고    scopus 로고
    • Learning and inference in the brain
    • Friston K. Learning and inference in the brain. Neural Networks 16 (2003) 1325-1352
    • (2003) Neural Networks , vol.16 , pp. 1325-1352
    • Friston, K.1
  • 11
    • 0036825785 scopus 로고    scopus 로고
    • Latent variable models for the topographic organisation of discrete and strictly positive data
    • Girolami M. Latent variable models for the topographic organisation of discrete and strictly positive data. Neurocomputing 48 (2002) 185-198
    • (2002) Neurocomputing , vol.48 , pp. 185-198
    • Girolami, M.1
  • 13
    • 0036498243 scopus 로고    scopus 로고
    • A dynamic probabilistic model to visualise topic evolution in text streams
    • Kabán A., and Girolami M. A dynamic probabilistic model to visualise topic evolution in text streams. Journal of Intelligence Information Systems 18 2-3 (2002) 107-125
    • (2002) Journal of Intelligence Information Systems , vol.18 , Issue.2-3 , pp. 107-125
    • Kabán, A.1    Girolami, M.2
  • 14
    • 21844471761 scopus 로고    scopus 로고
    • Clustering of time series subsequences is meaningless: Implications for previous and future research
    • Keogh E., and Lin J. Clustering of time series subsequences is meaningless: Implications for previous and future research. Knowledge and Information Systems 8 2 (2005) 154-177
    • (2005) Knowledge and Information Systems , vol.8 , Issue.2 , pp. 154-177
    • Keogh, E.1    Lin, J.2
  • 16
    • 0036825530 scopus 로고    scopus 로고
    • On the generative probability density model in the self-organizing map
    • Kostiainen T., and Lampinen J. On the generative probability density model in the self-organizing map. Neurocomputing 48 1-4 (2002) 217-228
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 217-228
    • Kostiainen, T.1    Lampinen, J.2
  • 18
    • 35048834810 scopus 로고    scopus 로고
    • Iterative incremental clustering of time series
    • Advances in database technology-EDBT 2004 proceedings. Bertino E., et al. (Ed)
    • Lin J., Vlachos M., Keogh E., and Gunopulos D. Iterative incremental clustering of time series. In: Bertino E., et al. (Ed). Advances in database technology-EDBT 2004 proceedings. LNCS Vol. 2992 (2004) 106-122
    • (2004) LNCS , vol.2992 , pp. 106-122
    • Lin, J.1    Vlachos, M.2    Keogh, E.3    Gunopulos, D.4
  • 19
    • 25144482321 scopus 로고    scopus 로고
    • Comparative assessment of the robustness of missing data imputation through Generative Topographic Mapping
    • Computational intelligence and bioinspired systems, IWANN 2005 proceedings. Cabestany J., Prieto A., and Sandoval F. (Eds)
    • Olier I., and Vellido A. Comparative assessment of the robustness of missing data imputation through Generative Topographic Mapping. In: Cabestany J., Prieto A., and Sandoval F. (Eds). Computational intelligence and bioinspired systems, IWANN 2005 proceedings. LNCS Vol. 3512 (2005) 787-794
    • (2005) LNCS , vol.3512 , pp. 787-794
    • Olier, I.1    Vellido, A.2
  • 20
    • 26444613281 scopus 로고    scopus 로고
    • Change detection in time series using wavelet footprints
    • Advances in spatial and temporal databases, SSTD 2005 proceedings. Medeiros C.B., Egenhofer M., and Bertino E. (Eds)
    • Sharifzadeh M., Azmoodeh F., and Shahabi C. Change detection in time series using wavelet footprints. In: Medeiros C.B., Egenhofer M., and Bertino E. (Eds). Advances in spatial and temporal databases, SSTD 2005 proceedings. LNCS Vol. 3633 (2005) 127-144
    • (2005) LNCS , vol.3633 , pp. 127-144
    • Sharifzadeh, M.1    Azmoodeh, F.2    Shahabi, C.3
  • 21
    • 33746632543 scopus 로고    scopus 로고
    • Unfolding preprocessing for meaningful time series clustering
    • Simon G., Lee J.A., and Verleysen M. Unfolding preprocessing for meaningful time series clustering. Neural Networks 19 6-7 (2006) 877-888
    • (2006) Neural Networks , vol.19 , Issue.6-7 , pp. 877-888
    • Simon, G.1    Lee, J.A.2    Verleysen, M.3
  • 22
    • 15844418774 scopus 로고    scopus 로고
    • Merge SOM for temporal data
    • Strickert M., and Hammer B. Merge SOM for temporal data. Neurocomputing 64 (2005) 39-71
    • (2005) Neurocomputing , vol.64 , pp. 39-71
    • Strickert, M.1    Hammer, B.2
  • 23
    • 51049090243 scopus 로고    scopus 로고
    • Tikka, J., & Hollmén, J. 2004. Learning linear dependency trees from multivariate time-series data. In: Proceedings of the IEEE international conference on data mining (ICDM 2004) workshop on temporal data mining: Algorithms, theory and applications
    • Tikka, J., & Hollmén, J. 2004. Learning linear dependency trees from multivariate time-series data. In: Proceedings of the IEEE international conference on data mining (ICDM 2004) workshop on temporal data mining: Algorithms, theory and applications
  • 24
    • 0036565797 scopus 로고    scopus 로고
    • Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way
    • Tino P., and Nabney I. Hierarchical GTM: Constructing localized nonlinear projection manifolds in a principled way. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 5 (2002) 639-656
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.5 , pp. 639-656
    • Tino, P.1    Nabney, I.2
  • 25
    • 33749430260 scopus 로고    scopus 로고
    • Dynamics and topographic organization of recursive self-organizing maps
    • Tino P., Farkaš I., and van Mourik J. Dynamics and topographic organization of recursive self-organizing maps. Neural Computation 18 (2006) 2529-2567
    • (2006) Neural Computation , vol.18 , pp. 2529-2567
    • Tino, P.1    Farkaš, I.2    van Mourik, J.3
  • 26
    • 51049103054 scopus 로고    scopus 로고
    • Vellido, A. (2005). Preliminary theoretical results on a feature relevance determination method for Generative Topographic Mapping. Technical report LSI-05-13-R. Universitat Politècnica de Catalunya (UPC)
    • Vellido, A. (2005). Preliminary theoretical results on a feature relevance determination method for Generative Topographic Mapping. Technical report LSI-05-13-R. Universitat Politècnica de Catalunya (UPC)
  • 27
    • 33751248753 scopus 로고    scopus 로고
    • Missing data imputation through GTM as a mixture of t-distributions
    • Vellido A. Missing data imputation through GTM as a mixture of t-distributions. Neural Networks 19 10 (2006) 1624-1635
    • (2006) Neural Networks , vol.19 , Issue.10 , pp. 1624-1635
    • Vellido, A.1
  • 29
    • 32544451613 scopus 로고    scopus 로고
    • Robust analysis of MRS brain tumour data using t-GTM
    • Vellido A., Lisboa P.J.G., and Vicente D. Robust analysis of MRS brain tumour data using t-GTM. Neurocomputing 69 7-9 (2006) 754-768
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 754-768
    • Vellido, A.1    Lisboa, P.J.G.2    Vicente, D.3
  • 30
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J. SOM-based data visualization methods. Intelligent Data Analysis 3 2 (1999) 111-126
    • (1999) Intelligent Data Analysis , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 31
    • 26844476580 scopus 로고    scopus 로고
    • An automated report generation tool for the data understanding phase
    • Abraham A., and Koeppen M. (Eds)
    • Vesanto J., and Hollmén J. An automated report generation tool for the data understanding phase. In: Abraham A., and Koeppen M. (Eds). Hybrid information systems. Proceedings of HIS'01 (2001) 611-625
    • (2001) Hybrid information systems. Proceedings of HIS'01 , pp. 611-625
    • Vesanto, J.1    Hollmén, J.2
  • 32
    • 0036790884 scopus 로고    scopus 로고
    • Recursive self-organizing maps
    • Voegtlin T. Recursive self-organizing maps. Neural Networks 15 8-9 (2002) 979-991
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 979-991
    • Voegtlin, T.1
  • 34
    • 0242540409 scopus 로고    scopus 로고
    • Yamanishi, K., & Takeuchi, J.-I. 2002. A unifying framework for detecting outliers and change points from non-stationary time series data. In: Proceedings of the 8th ACM SIGKDD intenational conference on knowledge discovery and data mining (pp. 676-681)
    • Yamanishi, K., & Takeuchi, J.-I. 2002. A unifying framework for detecting outliers and change points from non-stationary time series data. In: Proceedings of the 8th ACM SIGKDD intenational conference on knowledge discovery and data mining (pp. 676-681)
  • 35
    • 0035272084 scopus 로고    scopus 로고
    • Self-organizing mixture networks for probability density estimation
    • Yin H., and Allinson N. Self-organizing mixture networks for probability density estimation. IEEE Transaction on Neural Networks 12 (2001) 405-411
    • (2001) IEEE Transaction on Neural Networks , vol.12 , pp. 405-411
    • Yin, H.1    Allinson, N.2
  • 36
  • 37
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang G., Patuwo B., and Hu M. Forecasting with artificial neural networks: The state of the art. International Journal on Forecasting 14 1 (1998) 35-62
    • (1998) International Journal on Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.2    Hu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.