-
1
-
-
0034701311
-
Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals
-
DOI 10.1021/ja991249n
-
F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, and M. G. Bawendi, J. Am. Chem. Soc. 122, 2532 (2000). 10.1021/ja991249n (Pubitemid 30211965)
-
(2000)
Journal of the American Chemical Society
, vol.122
, Issue.11
, pp. 2532-2540
-
-
Mikulec, F.V.1
Kuno, M.2
Bennati, M.3
Hall, D.A.4
Griffin, R.G.5
Bawendi, M.G.6
-
2
-
-
22044453839
-
Doping semiconductor nanocrystals
-
DOI 10.1038/nature03832
-
S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, Nature (London) 436, 91 (2005). 10.1038/nature03832 (Pubitemid 40966190)
-
(2005)
Nature
, vol.436
, Issue.7047
, pp. 91-94
-
-
Erwin, S.C.1
Zu, L.2
Haftel, M.I.3
Efros, A.L.4
Kennedy, T.A.5
Norris, D.J.6
-
4
-
-
29744437691
-
First-principles study of n- and p-doped silicon nanoclusters
-
DOI 10.1103/PhysRevB.72.113303, 113303
-
G. Cantele, E. Degoli, E. Luppi, R. Magri, D. Ninno, G. Iadonisi, and S. Ossicini, Phys. Rev. B 72, 113303 (2005). 10.1103/PhysRevB.72.113303 (Pubitemid 43029032)
-
(2005)
Physical Review B - Condensed Matter and Materials Physics
, vol.72
, Issue.11
, pp. 1-4
-
-
Cantele, G.1
Degoli, E.2
Luppi, E.3
Magri, R.4
Ninno, D.5
Iadonisi, G.6
Ossicini, S.7
-
5
-
-
34347390654
-
-
10.1103/PhysRevB.75.235304
-
Q. Xu, J.-W. Luo, S.-S. Li, J.-B. Xia, J. Li, and S.-H. Wei, Phys. Rev. B 75, 235304 (2007). 10.1103/PhysRevB.75.235304
-
(2007)
Phys. Rev. B
, vol.75
, pp. 235304
-
-
Xu, Q.1
Luo, J.-W.2
Li, S.-S.3
Xia, J.-B.4
Li, J.5
Wei, S.-H.6
-
6
-
-
41449106738
-
-
10.1103/PhysRevB.77.113304
-
J. Li, S.-H. Wei, S.-S. Li, and J.-B. Xia, Phys. Rev. B 77, 113304 (2008). 10.1103/PhysRevB.77.113304
-
(2008)
Phys. Rev. B
, vol.77
, pp. 113304
-
-
Li, J.1
Wei, S.-H.2
Li, S.-S.3
Xia, J.-B.4
-
7
-
-
59449105854
-
-
10.1103/PhysRevLett.102.025901
-
T.-L. Chan, A. T. Zayak, G. M. Dalpian, and J. R. Chelikowsky, Phys. Rev. Lett. 102, 025901 (2009). 10.1103/PhysRevLett.102.025901
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 025901
-
-
Chan, T.-L.1
Zayak, A.T.2
Dalpian, G.M.3
Chelikowsky, J.R.4
-
8
-
-
37849002504
-
-
10.1038/nnano.2007.411
-
C. K. Chan, H. Peng, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008). 10.1038/nnano.2007.411
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 31
-
-
Chan, C.K.1
Peng, H.2
McIlwrath, K.3
Zhang, X.F.4
Huggins, R.A.5
Cui, Y.6
-
9
-
-
10644250257
-
-
10.1103/PhysRev.136.B864
-
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
-
(1964)
Phys. Rev.
, vol.136
, pp. 864
-
-
Hohenberg, P.1
Kohn, W.2
-
10
-
-
0042113153
-
-
10.1103/PhysRev.140.A1133
-
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133
-
(1965)
Phys. Rev.
, vol.140
, pp. 1133
-
-
Kohn, W.1
Sham, L.J.2
-
12
-
-
0033897941
-
Pseudopotential-density functional method applied to nanostructures
-
DOI 10.1088/0022-3727/33/8/201
-
J. R. Chelikowsky, J. Phys. D 33, R33 (2000). 10.1088/0022-3727/33/8/201 (Pubitemid 30592222)
-
(2000)
Journal of Physics D: Applied Physics
, vol.33
, Issue.8
-
-
Chelikowsky, J.R.1
-
13
-
-
77957720550
-
-
PARSEC has a website at
-
PARSEC has a website at http://parsec.ices.utexas.edu
-
-
-
-
14
-
-
33846337142
-
Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration
-
DOI 10.1103/PhysRevE.74.066704
-
Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Phys. Rev. E 74, 066704 (2006). 10.1103/PhysRevE.74.066704 (Pubitemid 46130638)
-
(2006)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.74
, Issue.6
, pp. 066704
-
-
Zhou, Y.1
Saad, Y.2
Tiago, M.L.3
Chelikowsky, J.R.4
-
15
-
-
33750366486
-
Self-consistent-field calculations using Chebyshev-filtered subspace iteration
-
DOI 10.1016/j.jcp.2006.03.017, PII S002199910600146X
-
Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, J. Comput. Phys. 219, 172 (2006). 10.1016/j.jcp.2006.03.017 (Pubitemid 44615400)
-
(2006)
Journal of Computational Physics
, vol.219
, Issue.1
, pp. 172-184
-
-
Zhou, Y.1
Saad, Y.2
Tiago, M.L.3
Chelikowsky, J.R.4
-
17
-
-
33645898818
-
-
10.1103/PhysRevB.45.13244
-
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). 10.1103/PhysRevB.45.13244
-
(1992)
Phys. Rev. B
, vol.45
, pp. 13244
-
-
Perdew, J.P.1
Wang, Y.2
-
20
-
-
0042010170
-
-
10.1063/1.1590409
-
M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, J. Appl. Phys. 94, 1990 (2003). 10.1063/1.1590409
-
(2003)
J. Appl. Phys.
, vol.94
, pp. 1990
-
-
Fujii, M.1
Toshikiyo, K.2
Takase, Y.3
Yamaguchi, Y.4
Hayashi, S.5
-
21
-
-
0001706688
-
-
10.1103/PhysRevLett.84.4393
-
Y. Tu and J. Tersoff, Phys. Rev. Lett. 84, 4393 (2000). 10.1103/PhysRevLett.84.4393
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 4393
-
-
Tu, Y.1
Tersoff, J.2
-
22
-
-
77957705766
-
-
We also tested the possibility of interstitial P in Si nanocrystals. We compare the formation energies of substitutional and interstitial P using a small Si35 H36 nanocrystal (diameter 13). For substitutional P, the formation energy depends on the Si chemical potential μ (Si ) after the replaced Si atom is extracted from the nanocrystal. Our study shows that μ (Si ) needs to be higher than -7.58Ry in order for the formation of interstitial P to be energetically favorable compared to substitutional P. According to our calculations, the total energy of bulk Si is -7.93Ry/atom, which is 4.77 eV lower than our calculated lower bound. If the extracted Si atom is deposited into a bulklike environment, it is highly unlikely that interstitial P can be formed in the nanoregime even if the P atom is close to the surface. We reach the same conclusion for the comparison between substitutional and interstitial B
-
We also tested the possibility of interstitial P in Si nanocrystals. We compare the formation energies of substitutional and interstitial P using a small Si 35 H 36 nanocrystal (diameter 13). For substitutional P, the formation energy depends on the Si chemical potential μ (Si) after the replaced Si atom is extracted from the nanocrystal. Our study shows that μ (Si) needs to be higher than - 7.58 Ry in order for the formation of interstitial P to be energetically favorable compared to substitutional P. According to our calculations, the total energy of bulk Si is - 7.93 Ry / atom, which is 4.77 eV lower than our calculated lower bound. If the extracted Si atom is deposited into a bulklike environment, it is highly unlikely that interstitial P can be formed in the nanoregime even if the P atom is close to the surface. We reach the same conclusion for the comparison between substitutional and interstitial B.
-
-
-
-
24
-
-
40449099420
-
Size limits on doping phosphorus into silicon nanocrystals
-
DOI 10.1021/nl072997a
-
T.-L. Chan, M. L. Tiago, E. Kaxiras, and J. R. Chelikowsky, Nano Lett. 8, 596 (2008). 10.1021/nl072997a (Pubitemid 351346024)
-
(2008)
Nano Letters
, vol.8
, Issue.2
, pp. 596-600
-
-
Chan, T.-L.1
Tiago, M.L.2
Kaxiras, E.3
Chelikowsky, J.R.4
|