메뉴 건너뛰기




Volumn , Issue , 2008, Pages 91-112

Dimension reduction

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL EFFICIENCY; FEATURE EXTRACTION; LEARNING ALGORITHMS; MACHINE LEARNING;

EID: 77957659350     PISSN: 16112482     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-75171-7_4     Document Type: Conference Paper
Times cited : (14)

References (48)
  • 3
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation, 12(10):2385-2404, 2000.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 5
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2):245-271, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 27544465829 scopus 로고    scopus 로고
    • Biclustering of expression data using simulated annealing
    • IEEE Computer Society
    • K. Bryan, P. Cunningham, and N. Bolshakova. Biclustering of expression data using simulated annealing. In CBMS, pages 383-388. IEEE Computer Society, 2005.
    • (2005) CBMS , pp. 383-388
    • Bryan, K.1    Cunningham, P.2    Bolshakova, N.3
  • 9
    • 0002390851 scopus 로고    scopus 로고
    • Efficient feature selection in conceptual clustering
    • D.H. Fisher, editor Morgan Kaufmann
    • M. Devaney and A. Ram. Efficient feature selection in conceptual clustering. In D.H. Fisher, editor, ICML, pages 92-97. Morgan Kaufmann, 1997.
    • (1997) ICML , pp. 92-97
    • Devaney, M.1    Ram, A.2
  • 10
    • 84948145012 scopus 로고    scopus 로고
    • A dynamic approach to reducing dialog in on-line decision guides
    • E. Blanzieri and L. Portinale, editors Springer
    • M. Doyle and P. Cunningham. A dynamic approach to reducing dialog in on-line decision guides. In E. Blanzieri and L. Portinale, editors, EWCBR, volume 1898 of Lecture Notes in Computer Science, pages 49-60. Springer, 2000.
    • (2000) EWCBR, Volume 1898 of Lecture notes in Computer Science , pp. 49-60
    • Doyle, M.1    Cunningham, P.2
  • 11
    • 0023523514 scopus 로고
    • How many clusters are best? - An experiment
    • R.C. Dubes. How many clusters are best? - an experiment. Pattern Recognition, 20(6):645-663, 1987.
    • (1987) Pattern Recognition , vol.20 , Issue.6 , pp. 645-663
    • Dubes, R.C.1
  • 13
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • D.H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2(2):139-172, 1987.
    • (1987) Machine Learning , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.H.1
  • 14
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 17
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • J. Handl, J. Knowles, and D.B. Kell. Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15):3201-3212, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 19
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In NIPS, 2005.
    • (2005) NIPS
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 20
    • 8644228268 scopus 로고    scopus 로고
    • Locality preserving projections
    • S. Thrun, L.K. Saul, and B. Schölkopf, editors MIT Press
    • X. He and P. Niyogi. Locality preserving projections. In S. Thrun, L.K. Saul, and B. Schölkopf, editors, NIPS. MIT Press, 2003.
    • (2003) NIPS
    • He, X.1    Niyogi, P.2
  • 21
    • 33845191548 scopus 로고    scopus 로고
    • Building a latent semantic index of an image database from patterns of relevance feedback
    • D.R. Heisterkamp. Building a latent semantic index of an image database from patterns of relevance feedback. In ICPR (4), pages 134-137, 2002.
    • (2002) ICPR , Issue.4 , pp. 134-137
    • Heisterkamp, D.R.1
  • 22
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:417-441, 1933.
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 23
    • 33751565280 scopus 로고    scopus 로고
    • Solving the small sample size problem of LDA
    • R. Huang, Q. Liu, H. Lu, and S. Ma. Solving the small sample size problem of LDA. In ICPR (3), pages 29-32, 2002.
    • (2002) ICPR , Issue.3 , pp. 29-32
    • Huang, R.1    Liu, Q.2    Lu, H.3    Ma, S.4
  • 26
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 28
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 29
    • 33750204194 scopus 로고    scopus 로고
    • Null space approach of fisher discriminant analysis for face recognition
    • D. Maltoni and A.K. Jain, editors Springer
    • W. Liu, Y. Wang, S.Z. Li, and T. Tan. Null space approach of fisher discriminant analysis for face recognition. In D. Maltoni and A.K. Jain, editors, ECCV Workshop BioAW, volume 3087 of Lecture Notes in Computer Science, pages 32-44. Springer, 2004.
    • (2004) ECCV Workshop BioAW, Volume 3087 of Lecture notes in Computer Science , pp. 32-44
    • Liu, W.1    Wang, Y.2    Li, S.Z.3    Tan, T.4
  • 31
    • 60349097971 scopus 로고    scopus 로고
    • Using early-stopping to avoid overfitting in wrapper-based feature subset selection employing stochastic search
    • M. Petridis, editor CMS Press
    • J. Loughrey and P. Cunningham. Using early-stopping to avoid overfitting in wrapper-based feature subset selection employing stochastic search. In M. Petridis, editor, In 10th UK Workshop on Case-Based Reasoning, pages 3-10. CMS Press, 2005.
    • (2005) 10th UK Workshop on Case-Based Reasoning , pp. 3-10
    • Loughrey, J.1    Cunningham, P.2
  • 33
    • 84898970836 scopus 로고    scopus 로고
    • Kernel PCA and de-noising in feature spaces
    • M.J. Kearns, S.A. Solla, and D.A. Cohn, editors The MIT Press
    • S. Mika, B. Schölkopf, A.J. Smola, K.R. Müller, M. Scholz, and G. Rätsch. Kernel PCA and de-noising in feature spaces. In M.J. Kearns, S.A. Solla, and D.A. Cohn, editors, NIPS, pages 536-542. The MIT Press, 1998.
    • (1998) NIPS , pp. 536-542
    • Mika, S.1    Schölkopf, B.2    Smola, A.J.3    Müller, K.R.4    Scholz, M.5    Rätsch, G.6
  • 34
    • 84957081878 scopus 로고    scopus 로고
    • Feature subset selection in text-learning
    • C. Nedellec and C. Rouveirol, editors Springer, Berlin
    • D. Mladenic. Feature subset selection in text-learning. In C. Nedellec and C. Rouveirol, editors, ECML, volume 1398 of Lecture Notes in Computer Science, pages 95-100. Springer, Berlin, 1998.
    • (1998) ECML, Volume 1398 of Lecture notes in Computer Science , pp. 95-100
    • Mladenic, D.1
  • 38
    • 33845582076 scopus 로고    scopus 로고
    • Whole-genome functional classification of genes by latent semantic analysis on microarray data
    • Y.-P. Phoebe Chen, editor Australian Computer Society
    • S.K. Ng, Z. Zhu, and Y.S. Ong. Whole-genome functional classification of genes by latent semantic analysis on microarray data. In Y.-P. Phoebe Chen, editor, APBC, volume 29 of CRPIT, pages 123-129. Australian Computer Society, 2004.
    • (2004) APBC, Volume 29 of CRPIT , pp. 123-129
    • Ng, S.K.1    Zhu, Z.2    Ong, Y.S.3
  • 39
    • 35048833795 scopus 로고    scopus 로고
    • Feature selection using improved mutual information for text classification
    • A.L. N. Fred, T. Caelli, R.P.W. Duin, A.C. Campilho, and D. de Ridder, editors Springer, Berlin
    • J. Novovičová, A. Malík, and P. Pudil. Feature selection using improved mutual information for text classification. In A.L. N. Fred, T. Caelli, R.P.W. Duin, A.C. Campilho, and D. de Ridder, editors, SSPR/SPR, volume 3138 of Lecture Notes in Computer Science, pages 1010-1017. Springer, Berlin, 2004.
    • (2004) SSPR/SPR, Volume 3138 of Lecture notes in Computer Science , pp. 1010-1017
    • Novovičová, J.1    Malík, A.2    Pudil, P.3
  • 41
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • J. Reunanen. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research, 3:1371-1382, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 43
    • 0032308266 scopus 로고    scopus 로고
    • Content analysis of video using principal componets
    • IEEE Computer Society
    • E. Sahouria and A. Zakhor. Content analysis of video using principal componets. In ICIP (3), pages 541-545, IEEE Computer Society, 1998.
    • (1998) ICIP , Issue.3 , pp. 541-545
    • Sahouria, E.1    Zakhor, A.2
  • 45
    • 33749237332 scopus 로고    scopus 로고
    • Local fisher discriminant analysis for supervised dimensionality reduction
    • W.W. Cohen and A. Moore, editors ACM
    • M. Sugiyama. Local Fisher discriminant analysis for supervised dimensionality reduction. In W.W. Cohen and A. Moore, editors, ICML, pages 905-912. ACM, 2006.
    • (2006) ICML , pp. 905-912
    • Sugiyama, M.1
  • 46
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • M. West. Bayesian factor regression models in the "large p, small n" paradigm. Bayesian Statistics, 7:723-732, 2003.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 47
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • L. Wolf and A. Shashua. Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach. Journal of Machine Learning Research, 6:1855-1887, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.